Câu hỏi:

17/07/2025 172 Lưu

Cho tam giác \(ABC\) vuông tại \(A\). Gọi \(M\) là một điểm bất kì trên cạnh huyền \(BC\). Gọi \(D\) và \(E\) lần lượt là chân đường vuông góc kẻ từ \(M\) xuống \(AB\) và \(AC.\) Lấy điểm \(I\) sao cho \(A\) là trung điểm của \(ID\); điểm \(K\) sao cho \(M\) là trung điểm của \(EK\).

a) \(IA = ID\,;\,\,KM = KE.\)

b) Tứ giác \(ADME\) là hình chữ nhật.

c) Tứ giác \(ADMC\) là hình thang cân.

d) \(DK\,{\rm{//}}\,EI\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án:

a) Sai.

b) Đúng.

c) Sai.

d) Đúng.

⦁ Khi lấy điểm \(I\) sao cho \(A\) là trung điểm của \(ID\); điểm \(K\) sao cho \(M\) là trung điểm của \(EK\).

Suy ra \(AI = AD\,;\,\,MK = ME.\) Do đó ý a) là sai.

⦁ Xét tứ giác \(ADME\) có:

\(\widehat {DAE} = 90^\circ \) (vì \(\Delta ABC\) vuông tại \(A\))

\(\widehat {ADM} = 90^\circ \) \(\left( {MD \bot AB} \right)\)

\(\widehat {AEM} = 90^\circ \) \(\left( {ME \bot AC} \right)\)

Do đó tứ giác \(ADME\) là hình chữ nhật. Do đó ý b) đúng.

Cho tam giác   A B C   vuông tại   A  . Gọi   M   là một điểm bất kì trên cạnh huyền   B C  . Gọi   D   và   E   lần lượt là chân đường vuông góc kẻ từ   M   xuống   A B   và   A C .   Lấy điểm   I   sao cho   A   là trung điểm của   I D  ; điểm   K   sao cho   M   là trung điểm của   E K  .  a)   I A = I D ; K M = K E .    b) Tứ giác   A D M E   là hình chữ nhật.  c) Tứ giác   A D M C   là hình thang cân.  d)   D K / / E I  . (ảnh 1)

⦁ Vì \(AB \bot AC\) (vì \(\Delta ABC\) vuông tại \(A\)); \(MD \bot AB\) nên \(MD\,{\rm{//}}\,AC.\)

Tứ giác \(ADMC\) có \(MD\,{\rm{//}}\,AC\) nên \(ADMC\) là hình thang.

Hình thang \(ADMC\) có \(\widehat {CAD} = 90^\circ \) nên \(ADMC\) là hình thang vuông. Do đó ý c) sai.

⦁ Vì \(ADME\) là hình chữ nhật nên \(AD = ME\,;\,\,AD\,{\rm{//}}\,ME\) (tính chất hình chữ nhật).

Mà \(A\) là trung điểm của \(DI\); \(M\) là trung điểm của \(KE\) nên \[DI = KE;\,\,DI\,{\rm{//}}\,KE.\]

Suy ra \(DIEK\) là hình bình hành.

Do đó \(DK\,{\rm{//}}\,EI\). Do đó ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Áp dụng định lý Pythagore vào tam giác vuông \(ABC\) vuông tại \(B\) ta có:

\(A{C^2} = A{B^2} + B{C^2}\)

Suy ra \(BC = \sqrt {A{C^2} - A{B^2}} = \sqrt {{{12}^2} - {9^2}} = \sqrt {63} \) (km).

Chi phí làm đường ống từ \(B\) tới điểm \(C\) của công ty trên bằng tiền VNĐ là:

\(\sqrt {63} \cdot 5\,\,000 \cdot 26\,\,115 = 1\,\,036\,\,406\,\,932\) (đồng) \( \approx 1,036\) (tỉ đồng).

Lời giải

Hướng dẫn giải

a) Ta có \(GF \bot AC\) và \(AB \bot AC\) (do \(\Delta ABC\) vuông tại \(A)\) nên \(GF\,{\rm{//}}\,AB.\)

Xét tứ giác \(BEIF\) có \(BE\,{\rm{//}}\,FI\) (do \(GF\,{\rm{//}}\,AB)\) và \(EI\,{\rm{//}}\,BF.\)

Do đó, tứ giác \(BEIF\) là hình bình hành.

b) Xét \(\Delta ABC\) vuông tại \(A\) có \(AG\) là đường trung tuyến ứng với cạnh huyền \(BC\) nên \(AG = \frac{1}{2}BC\) (tính chất đường trung tuyến ứng với cạnh huyền).

(1,0 điểm) Cho tam giác   A B C   vuông ở   A .   Gọi   G   là trung điểm của   B C .   Qua   G   kẻ   G E ⊥ A B     ( E ∈ A B )   và   G F ⊥ A C     ( F ∈ A C ) .   Từ   E   kẻ đường thẳng song song với   B F ,   đường thẳng này cắt   G F   tại   I .    a) Chứng minh tứ giác   B E I F   là hình bình hành.  b) Tìm điều kiện của tam giác   A B C   để tứ giác   A G C I   là hình vuông. (ảnh 1)

\(G\) là trung điểm của \(BC\) nên \(BG = CG = \frac{1}{2}BC.\)

Do đó \(AG = BG = CG = \frac{1}{2}BC.\)

Suy ra \(\Delta ABG\) và \(\Delta ACG\) đều là tam giác cân tại \(G.\)

Xét \(\Delta ABG\) cân tại \(G\) có đường cao \(GE\) nên đồng thời là đường trung tuyến, do đó \(E\) là trung điểm của \[AB\] nên \(BE = AE.\) (1)

Tương tự với \(\Delta ACG\) cân tại \(G\) ta cũng có \(GF\) vừa là đường cao đồng thời là đường trung tuyến nên \(F\) là trung điểm của \(AC.\)

Xét tứ giác \(AEGF\) có:

⦁ \(\widehat {EAF} = 90^\circ \) (do \(\Delta ABC\) vuông tại \(A);\)

⦁ \(\widehat {AEG} = 90^\circ \) (do \(GE \bot AB);\)

⦁ \(\widehat {AFG} = 90^\circ \) (do \(GF \bot AC)\).

Do đó tứ giác \(AEGF\) là hình chữ nhật, suy ra \(AE = GF\).(2)

Mà \(BEIF\) là hình bình hành nên \(BE = FI\) .(3)

Từ (1), (2) và (3) suy ra \(GF = FI\) hay \(F\) là trung điểm của \(GI.\)

Xét tứ giác \(AGCI\) có hai đường chéo \(GI\) và \(AC\) cắt nhau tại trung điểm \(F\) của mỗi đường nên tứ giác \(AGCI\) là hình bình hành.

Lại có \(GI\) vuông góc với \(AC\) nên hình bình hành \(AGCI\) là hình thoi.

Để \(AGCI\) là hình vuông thì \(GI = AC\).

Lại có \(AB = 2AE,\,\,GI = 2GF\) và \(AE = GF\)nên \(AB = GI\).

Khi đó ta sẽ có \(AB = AC\) hay \(\Delta ABC\) cân tại \(A.\)

Vậy tam giác \(ABC\) vuông cân tại \(A\) thì \(AGCI\) là hình vuông.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. hình thang cân. 
B. hình chữ nhật. 
C. hình bình hành. 
D. hình thoi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP