Cho biểu thức \[I = \frac{{{{\left( {x + 2} \right)}^2}}}{x} \cdot \left( {1 - \frac{{{x^2}}}{{x + 2}}} \right) - \frac{{{x^2} + 6x + 4}}{x}\,\,\,\left( {x \ne 0\,;\,\,x \ne 2} \right)\]. Hỏi sau khi rút gọn biểu thức \[I\] ta được đa thức có bậc là bao nhiêu?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp số: 1.
Với \(x \ne 0\,;\,\,x \ne 2,\) ta có:
\[I = \frac{{{{\left( {x + 2} \right)}^2}}}{x} \cdot \left( {1 - \frac{{{x^2}}}{{x + 2}}} \right) - \frac{{{x^2} + 6x + 4}}{x}\]
\( = \frac{{{{\left( {x + 2} \right)}^2}}}{x} - \frac{{{{\left( {x + 2} \right)}^2}}}{x} \cdot \frac{{{x^2}}}{{x + 2}} - \frac{{{x^2} + 6x + 4}}{x}\)
\( = \frac{{{{\left( {x + 2} \right)}^2}}}{x} - x\left( {x + 2} \right) - \frac{{{x^2} + 6x + 4}}{x}\)
\( = \left[ {\frac{{{{\left( {x + 2} \right)}^2}}}{x} - \frac{{{x^2} + 6x + 4}}{x}} \right] - x\left( {x + 2} \right)\)
\( = \frac{{{x^2} + 4x + 4 - {x^2} - 6x - 4}}{x} - x\left( {x + 2} \right)\)
\( = \frac{{ - 2x}}{x} - x\left( {x + 2} \right)\)\( = - {x^2} - 2x - 2.\)
Vậy với \(x \ne 0\,;\,\,x \ne 2,\) sau khi rút gọn biểu thức \[I\] ta được đa thức có bậc là 2.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án:
a) Sai.
b) Đúng.
c) Sai.
d) Đúng.
⦁ Khi lấy điểm \(I\) sao cho \(A\) là trung điểm của \(ID\); điểm \(K\) sao cho \(M\) là trung điểm của \(EK\). Suy ra \(AI = AD\,;\,\,MK = ME.\) Do đó ý a) là sai. ⦁ Xét tứ giác \(ADME\) có: \(\widehat {DAE} = 90^\circ \) (vì \(\Delta ABC\) vuông tại \(A\)) \(\widehat {ADM} = 90^\circ \) \(\left( {MD \bot AB} \right)\) \(\widehat {AEM} = 90^\circ \) \(\left( {ME \bot AC} \right)\) Do đó tứ giác \(ADME\) là hình chữ nhật. Do đó ý b) đúng. |
|
⦁ Vì \(AB \bot AC\) (vì \(\Delta ABC\) vuông tại \(A\)); \(MD \bot AB\) nên \(MD\,{\rm{//}}\,AC.\)
Tứ giác \(ADMC\) có \(MD\,{\rm{//}}\,AC\) nên \(ADMC\) là hình thang.
Hình thang \(ADMC\) có \(\widehat {CAD} = 90^\circ \) nên \(ADMC\) là hình thang vuông. Do đó ý c) sai.
⦁ Vì \(ADME\) là hình chữ nhật nên \(AD = ME\,;\,\,AD\,{\rm{//}}\,ME\) (tính chất hình chữ nhật).
Mà \(A\) là trung điểm của \(DI\); \(M\) là trung điểm của \(KE\) nên \[DI = KE;\,\,DI\,{\rm{//}}\,KE.\]
Suy ra \(DIEK\) là hình bình hành.
Do đó \(DK\,{\rm{//}}\,EI\). Do đó ý d) đúng.
Lời giải
Hướng dẫn giải
a) Hàm số của \[L\] theo \[a\] là: \[L = 350\,\,000a--410\,\,000\,\,000.\]
Thay \[a = 1\,\,000\] vào công thức \[L = 350\,\,000a--410\,\,000\,\,000\], ta được:
\[L = 350\,\,000 \cdot 1\,\,000--410\,\,000\,\,000 = 60\,\,000\,\,000\].
Vậy xí nghiệp sẽ lỗ \[60\,\,000\,\,000\] đồng.
b) Xét \[L \ge 0\] hay \(350\,\,000A - 410\,\,000\,\,000 \ge 0\).
Khi đó \(a \ge \frac{{410\,\,000\,\,000}}{{350\,\,000}} = 1171,4\).
Vậy xí nghiệp cần phải bán ít nhất \[1\,\,172\] chiếc áo thì xí nghiệp không bị lỗ.
c) Trung bình mỗi tháng, xí nghiệp cần phải lời:
\(\frac{{1\,\,380\,\,000\,\,000}}{{12}} = 115\,\,000\,\,000\) (đồng).
Thay \[L = 115\,\,000\,\,000\] vào công thức \[L = 350\,\,000a--410\,\,000\,\,000\], ta được:
\[115\,\,000\,\,000 = 350\,\,000a--410\,\,000\,\,000\].
Do đó \(a = \frac{{115\,\,000\,\,000 + 410\,\,000\,\,000}}{{350\,\,000}} = 1\,\,500\).
Vậy trung bình mỗi tháng, xí nghiệp cần bán được \[1\,\,500\] chiếc áo.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.