Câu hỏi:

17/07/2025 9 Lưu

(0,5 điểm) Cho \({a^3} + {b^3} + {c^3} = 3abc\) và \(a + b + c \ne 0.\) Tính giá trị của biểu thức: \(N = \frac{{{a^2} + {b^2} + {c^2}}}{{{{\left( {a + b + c} \right)}^2}}}.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Ta có \({a^3} + {b^3} + {c^3} = 3abc\)

\({a^3} + {b^3} + {c^3} - 3abc = 0\)

\({\left( {a + b} \right)^3} - 3ab\left( {a + b} \right) + {c^3} - 3abc = 0\)

\({\left( {a + b} \right)^3} + {c^3} - 3ab\left( {a + b + c} \right) = 0\)

\({\left( {a + b + c} \right)^3} - 3\left( {a + b} \right)c\left( {a + b + c} \right) - 3ab\left( {a + b + c} \right) = 0\)

\(\left( {a + b + c} \right)\left[ {{{\left( {a + b + c} \right)}^2} - 3ac - 3bc - 3ab} \right] = 0\)

\(\left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ac - bc - ab} \right) = 0\)

Suy ra \({a^2} + {b^2} + {c^2} - ac - bc - ab = 0\) (do \(a + b + c \ne 0).\)

Nên \[{a^2} + {b^2} + {c^2} = ab + bc + ca.\]

Khi đó ta có \(N = \frac{{{a^2} + {b^2} + {c^2}}}{{{{\left( {a + b + c} \right)}^2}}} = \frac{{{a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ca} \right)}}\)

\( = \frac{{{a^2} + {b^2} + {c^2}}}{{{a^2} + {b^2} + {c^2} + 2\left( {{a^2} + {b^2} + {c^2}} \right)}} = \frac{{{a^2} + {b^2} + {c^2}}}{{3\left( {{a^2} + {b^2} + {c^2}} \right)}} = \frac{1}{3}.\)

Vậy \(N = \frac{1}{3}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án:

a) Sai.

b) Đúng.

c) Sai.

d) Đúng.

⦁ Khi lấy điểm \(I\) sao cho \(A\) là trung điểm của \(ID\); điểm \(K\) sao cho \(M\) là trung điểm của \(EK\).

Suy ra \(AI = AD\,;\,\,MK = ME.\) Do đó ý a) là sai.

⦁ Xét tứ giác \(ADME\) có:

\(\widehat {DAE} = 90^\circ \) (vì \(\Delta ABC\) vuông tại \(A\))

\(\widehat {ADM} = 90^\circ \) \(\left( {MD \bot AB} \right)\)

\(\widehat {AEM} = 90^\circ \) \(\left( {ME \bot AC} \right)\)

Do đó tứ giác \(ADME\) là hình chữ nhật. Do đó ý b) đúng.

Cho tam giác   A B C   vuông tại   A  . Gọi   M   là một điểm bất kì trên cạnh huyền   B C  . Gọi   D   và   E   lần lượt là chân đường vuông góc kẻ từ   M   xuống   A B   và   A C .   Lấy điểm   I   sao cho   A   là trung điểm của   I D  ; điểm   K   sao cho   M   là trung điểm của   E K  .  a)   I A = I D ; K M = K E .    b) Tứ giác   A D M E   là hình chữ nhật.  c) Tứ giác   A D M C   là hình thang cân.  d)   D K / / E I  . (ảnh 1)

⦁ Vì \(AB \bot AC\) (vì \(\Delta ABC\) vuông tại \(A\)); \(MD \bot AB\) nên \(MD\,{\rm{//}}\,AC.\)

Tứ giác \(ADMC\) có \(MD\,{\rm{//}}\,AC\) nên \(ADMC\) là hình thang.

Hình thang \(ADMC\) có \(\widehat {CAD} = 90^\circ \) nên \(ADMC\) là hình thang vuông. Do đó ý c) sai.

⦁ Vì \(ADME\) là hình chữ nhật nên \(AD = ME\,;\,\,AD\,{\rm{//}}\,ME\) (tính chất hình chữ nhật).

Mà \(A\) là trung điểm của \(DI\); \(M\) là trung điểm của \(KE\) nên \[DI = KE;\,\,DI\,{\rm{//}}\,KE.\]

Suy ra \(DIEK\) là hình bình hành.

Do đó \(DK\,{\rm{//}}\,EI\). Do đó ý d) đúng.

Lời giải

Hướng dẫn giải

Đáp số: \[{\bf{1}},{\bf{45}}\].

Nửa chu vi đáy của kho chứa là: \[\left( {6 \cdot \;4} \right):2 = 12\,\,\left( {\rm{m}} \right).\]

Diện tích xung quanh của kho chứa là: \[12 \cdot 3 = 36{\rm{ }}\left( {{{\rm{m}}^{\rm{2}}}} \right).\]

Diện tích cần sơn phủ là: \[36 - 7 = 29{\rm{ }}\left( {{{\rm{m}}^{\rm{2}}}} \right).\]

Số tiền cần trả để hoàn thành việc sơn phủ là:

\[29 \cdot 50{\rm{ }}000 = 1\,\,450\,\,000\] (đồng) \[ = 1,45\] (triệu đồng).

Vậy số tiền cần trả để hoàn thành việc sơn phủ đó \[1,45\] triệu đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP