Phân tích đa thức \[\left( {{x^2} + 4x + 4} \right) - \left( {x + 2} \right)\] thành nhân tử ta được
Phân tích đa thức \[\left( {{x^2} + 4x + 4} \right) - \left( {x + 2} \right)\] thành nhân tử ta được
A. \[\left( {x + 2} \right)\left( {x + 1} \right)\].
B. \[x\left( {x + 2} \right)\].
C. \[x\left( {x + 3} \right)\].
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Ta có \[\left( {{x^2} + 4x + 4} \right) - \left( {x + 2} \right)\]
\[ = \,{\left( {x + 2} \right)^2}\, - \,\left( {x + 2} \right)\]
\[ = \,\left( {x + 2} \right)\left( {x + 2 - 1} \right)\]
\[ = \,\left( {x + 2} \right)\left( {x + 1} \right)\].Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(1,121\) tỉ đồng.
B. \(1,036\) tỉ đồng.
C. \(1,306\) tỉ đồng.
D. \(1,959\) tỉ đồng.
Lời giải
Đáp án đúng là: C
Áp dụng định lý Pythagore vào tam giác vuông \(ABC\) vuông tại \(B\) ta có:
\(A{C^2} = A{B^2} + B{C^2}\)
Suy ra \(BC = \sqrt {A{C^2} - A{B^2}} = \sqrt {{{12}^2} - {9^2}} = \sqrt {63} \) (km).
Chi phí làm đường ống từ \(B\) tới điểm \(C\) của công ty trên bằng tiền VNĐ là:
\(\sqrt {63} \cdot 5\,\,000 \cdot 26\,\,115 = 1\,\,036\,\,406\,\,932\) (đồng) \( \approx 1,036\) (tỉ đồng).
Lời giải
Hướng dẫn giải
|
a) Ta có \(GF \bot AC\) và \(AB \bot AC\) (do \(\Delta ABC\) vuông tại \(A)\) nên \(GF\,{\rm{//}}\,AB.\) Xét tứ giác \(BEIF\) có \(BE\,{\rm{//}}\,FI\) (do \(GF\,{\rm{//}}\,AB)\) và \(EI\,{\rm{//}}\,BF.\) Do đó, tứ giác \(BEIF\) là hình bình hành. b) Xét \(\Delta ABC\) vuông tại \(A\) có \(AG\) là đường trung tuyến ứng với cạnh huyền \(BC\) nên \(AG = \frac{1}{2}BC\) (tính chất đường trung tuyến ứng với cạnh huyền). |
|
Mà
\(G\) là trung điểm của \(BC\) nên \(BG = CG = \frac{1}{2}BC.\)
Do đó \(AG = BG = CG = \frac{1}{2}BC.\)
Suy ra \(\Delta ABG\) và \(\Delta ACG\) đều là tam giác cân tại \(G.\)
Xét \(\Delta ABG\) cân tại \(G\) có đường cao \(GE\) nên đồng thời là đường trung tuyến, do đó \(E\) là trung điểm của \[AB\] nên \(BE = AE.\) (1)
Tương tự với \(\Delta ACG\) cân tại \(G\) ta cũng có \(GF\) vừa là đường cao đồng thời là đường trung tuyến nên \(F\) là trung điểm của \(AC.\)
Xét tứ giác \(AEGF\) có:
⦁ \(\widehat {EAF} = 90^\circ \) (do \(\Delta ABC\) vuông tại \(A);\)
⦁ \(\widehat {AEG} = 90^\circ \) (do \(GE \bot AB);\)
⦁ \(\widehat {AFG} = 90^\circ \) (do \(GF \bot AC)\).
Do đó tứ giác \(AEGF\) là hình chữ nhật, suy ra \(AE = GF\).(2)
Mà \(BEIF\) là hình bình hành nên \(BE = FI\) .(3)
Từ (1), (2) và (3) suy ra \(GF = FI\) hay \(F\) là trung điểm của \(GI.\)
Xét tứ giác \(AGCI\) có hai đường chéo \(GI\) và \(AC\) cắt nhau tại trung điểm \(F\) của mỗi đường nên tứ giác \(AGCI\) là hình bình hành.
Lại có \(GI\) vuông góc với \(AC\) nên hình bình hành \(AGCI\) là hình thoi.
Để \(AGCI\) là hình vuông thì \(GI = AC\).
Lại có \(AB = 2AE,\,\,GI = 2GF\) và \(AE = GF\)nên \(AB = GI\).
Khi đó ta sẽ có \(AB = AC\) hay \(\Delta ABC\) cân tại \(A.\)
Vậy tam giác \(ABC\) vuông cân tại \(A\) thì \(AGCI\) là hình vuông.
Câu 3
A. \(AC\).
B. \(AM\).
C. \(BN\).
D. \(AP\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



