Quảng cáo
Trả lời:
Ta có \(2{x^2}y{\left( {2{y^3}} \right)^2} = 2{x^2}y \cdot 4{y^6} = 8{x^2}{y^7}.\)
Đơn thức trên có bậc là \(2 + 7 = 9.\)
Vậy đơn thức \(2{x^2}y{\left( {2{y^3}} \right)^2}\) có bậc là 9.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: 2.
Vì \(AD\) là tia phân giác \(\Delta ABC\) nên ta có \[\frac{{AB}}{{AC}} = \frac{{BD}}{{CD}}\].
Suy ra \[\frac{4}{8} = \frac{{BD}}{{CD}}\] hay \[\frac{{BD}}{4} = \frac{{CD}}{8}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{BD}}{4} = \frac{{CD}}{8} = \frac{{BD + CD}}{{4 + 8}} = \frac{{BC}}{{12}} = \frac{6}{{12}} = \frac{1}{2}\].
Do đó \[BD = 4 \cdot \frac{1}{2} = 2\,\,{\rm{(cm)}}\]
Vậy độ dài đoạn thẳng \[BD\] bằng 2 cm.
Lời giải
Hướng dẫn giải
Đáp số: 35.
Xét tứ giác \[MNPQ,\] ta có: \(\widehat Q + \widehat {QMN} + \widehat N + \widehat {NPQ} = 360^\circ \) (tổng các góc của một tứ giác).
Suy ra \(\widehat {NPQ} = 360^\circ - \left( {\widehat {QMN} + \widehat N + \widehat Q} \right) = 360^\circ - \left( {110^\circ + 120^\circ + 60^\circ } \right) = 70^\circ \).
Do \[PM\] là tia phân giác của góc \[NPQ\] nên ta có: \(\widehat {MPQ} = \frac{{\widehat {NPQ}}}{2} = \frac{{70^\circ }}{2} = 35^\circ \).
Vậy số đo của \(\widehat {MPQ}\) là \(35^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.