Câu hỏi:

18/07/2025 28 Lưu

Cho đa thức \(G = \left( {7{x^5}{y^4}{z^3} - 3{x^4}y{z^2} + 2{x^2}{y^2}z} \right):{x^2}yz\).

Đa thức \[A\] thỏa mãn \(A + 14{x^3}{y^3}{z^2} - 6{x^2}z = G\).

a) Bậc của đa thức \(G\) là 8.

b) Giá trị của biểu thức \(G\) tại \(x = 1\,;\,\,y = - 1\,;\,\,z = 1\) là 12.

c) Đa thức \[A\] có hạng tử tự do là 2.

d) Tổng của hai đa thức \[A\] và \(G\) là một đơn thức.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án:

a) Đúng.

b) Sai.

c) Sai.

d) Đúng.

⦁ Ta có \[G = \left( {7{x^5}{y^4}{z^3} - 3{x^4}y{z^2} + 2{x^2}{y^2}z} \right):{x^2}yz\]

\[ = 7{x^5}{y^4}{z^3}:{x^2}yz - 3{x^4}y{z^2}:{x^2}yz + 2{x^2}{y^2}z:{x^2}yz\]

\[ = 7{x^3}{y^3}{z^2} - 3{x^2}z + 2y\].

Đa thức \(G\) có bậc là 8. Do đó ý a) đúng.

⦁ Thay \(x = 1\,;\,\,y = - 1\,;\,\,z = 1\) vào biểu thức \(G\), ta có:

\(G = 7 \cdot {1^3} \cdot {\left( { - 1} \right)^3} \cdot {1^2} - 3 \cdot {1^2} \cdot 1 + 2 \cdot \left( { - 1} \right) = - 7 - 3 - 2 = - 12.\)

Vậy với \(x = 1\,;\,\,y = - 1\,;\,\,z = 1\) thì \(G = - 12\). Do đó ý b) sai.

⦁ Ta có \(A + 14{x^3}{y^3}{z^2} - 6{x^2}z = G\) hay \(A + 14{x^3}{y^3}{z^2} - 6{x^2}z = 7{x^3}{y^3}{z^2} - 3{x^2}z + 2y\)

Suy ra \(A = \left( {7{x^3}{y^3}{z^2} - 3{x^2}z + 2y} \right) - 2y\)

\( = 7{x^3}{y^3}{z^2} - 3{x^2}z + 2y - 14{x^3}{y^3}{z^2} + 6{x^2}z\)

\( = - 7{x^3}{y^3}{z^2} + 3{x^2}z\).

Khi đó, đa thức \[A\] hạng tử tự do là 0. Do đó ý c) sai.

⦁ Ta có \[A + G = \left( { - 7{x^3}{y^3}{z^2} + 3{x^2}z} \right) + \left( {7{x^3}{y^3}{z^2} - 3{x^2}z + 2y} \right)\]

\[ = - 7{x^3}{y^3}{z^2} + 3{x^2}z + 7{x^3}{y^3}{z^2} - 3{x^2}z + 2y\]

\[ = \left( { - 7{x^3}{y^3}{z^2} + 7{x^3}{y^3}{z^2}} \right) + \left( {3{x^2}z - 3{x^2}z} \right) + 2y\]\( = 2y\).

Như vậy, tổng của hai đa thức \[A\] và \(G\) là một đơn thức. Do đó ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp số: \[ - {\bf{5}}\].

Với \[x \ne - 3\,;\,\,x \ne 3\,;\,\,x \ne - 1\], ta có:

\[S = \left( {\frac{x}{{x + 3}} - \frac{2}{{x - 3}} + \frac{{{x^2} - 1}}{{9 - {x^2}}}} \right):\left( {2 - \frac{{x + 5}}{{3 + x}}} \right)\]

\( = \left[ {\frac{x}{{x + 3}} - \frac{2}{{x - 3}} - \frac{{{x^2} - 1}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}} \right]:\frac{{x + 1}}{{x + 3}}\)

\( = \frac{{x\left( {x - 3} \right) - 2\left( {x + 3} \right) - \left( {{x^2} - 1} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}:\frac{{x + 1}}{{x + 3}}\)

\( = \frac{{{x^2} - 3x - 2x - 6 - {x^2} + 1}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} \cdot \frac{{x + 3}}{{x + 1}}\)

\[ = \frac{{ - 5x - 5}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} \cdot \frac{{x + 3}}{{x + 1}}\]

\[ = \frac{{ - 5\left( {x + 1} \right)}}{{\left( {x - 3} \right)\left( {x + 1} \right)}} = \frac{{ - 5}}{{x - 3}}.\]

Vậy với \(x \ne - 3\,;\,\,x \ne 3\,;\,\,x \ne - 1,\) sau khi rút gọn biểu thức \[S\] ta được phân thức có tử thức bằng \( - 5.\)

Lời giải

Hướng dẫn giải

Đáp số: 35.

Cho tứ giác   M N P Q   có   P M   là tia phân giác của góc   ˆ N P Q .   Biết   ˆ Q M N = 110 ∘ ,     ˆ N = 120 ∘   và   ˆ Q = 60 ∘ .   Tính số đo của   ˆ M P Q   (đơn vị: độ). (ảnh 1)

Xét tứ giác \[MNPQ,\] ta có: \(\widehat Q + \widehat {QMN} + \widehat N + \widehat {NPQ} = 360^\circ \) (tổng các góc của một tứ giác).

Suy ra \(\widehat {NPQ} = 360^\circ - \left( {\widehat {QMN} + \widehat N + \widehat Q} \right) = 360^\circ - \left( {110^\circ + 120^\circ + 60^\circ } \right) = 70^\circ \).

Do \[PM\] là tia phân giác của góc \[NPQ\] nên ta có: \(\widehat {MPQ} = \frac{{\widehat {NPQ}}}{2} = \frac{{70^\circ }}{2} = 35^\circ \).

Vậy số đo của \(\widehat {MPQ}\) là \(35^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP