Câu hỏi:

18/07/2025 200 Lưu

Tìm \(m\) để bất phương trình \(mx - 3y < 2\) là bất phương trình bậc nhất hai ẩn?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Bất phương trình bậc nhất hai ẩn \[x\], \[y\] có dạng tổng quát là:\(ax + by \le c\,\left( {ax + by \ge c;\,ax + by < c;\,ax + by > c} \right)\), trong đó \(a\), \(b\), \(c\) là những số thực đã cho, \(a\) và \(b\) không đồng thời bằng \(0\), \(x\) và \(y\) là các ẩn số.

Do đó, với mọi số thực \(m\) thì bất phương trình \(mx - 3y < 2\) là bất phương trình bậc nhất hai ẩn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì \(\left( {m_0^2\,;\,n_0^2} \right)\) là nghiệm của bất phương trình \(2x + 3y - 10 \le 0\) nên ta có:

2m02+3n0210m025n021035m05103n0103 do m0,n0m02;1;0;1;2n01;0;1

Thử lại ta loại các bộ \[\left( {2; - 1} \right);\left( {2;1} \right),\left( { - 2;1} \right),\left( { - 2; - 1} \right)\;\].

Vậy có 11 cặp số \(\left( {{m_0}\,;\,{n_0}} \right)\) sao cho \(\left( {m_0^2\,;\,n_0^2} \right)\) là nghiệm của bất phương trình đã cho.

Đáp án: 11.

Lời giải

Gọi \(x\), \(y\) lần lượt là số xe loại \(A\) và loại \(B\) cần nhập ( \(x,y \in \mathbb{N}\)).

Tổng số tiền nhập xe là: \(30000000x + 50000000y\) đồng.

Số tiền dùng để nhập xe không quá 4 tỉ đồng, tức là:

\[30000000x + 50000000y \le 4000000000 \Leftrightarrow 3x + 5y \le 400\,\left( * \right)\].

Thay \(x = 70,y = 40\) vào bất phương trình \[\left( * \right)\] ta có: \[410 \le 400\] (vô lý).

Thay \(x = 73,y = 37\) vào bất phương trình \[\left( * \right)\] ta có: \[404 \le 400\] (vô lý).

Thay \(x = 78,y = 32\) vào bất phương trình \[\left( * \right)\] ta có: \[394 \le 400\] (đúng).

Thay \(x = 67,y = 43\) vào bất phương trình \[\left( * \right)\] ta có: \[416 \le 400\] (vô lý).

Vậy trong trường hợp cửa hàng nhập \(78\) xe loại \(A\) và \(32\) xe loại \(B\) thì số tiền dùng để nhập xe không quá 4 tỉ đồng.

Vậy \(m = 78\,;\,\,n = 32 \Rightarrow m + n = 78 + 32 = 110\).

Đáp án: 110.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP