Cho tam giác \(ABC\) có số đo các cạnh lần lượt là \(7,9\) và \(12\). Gọi \(S,R,p,r\) lần lượt là diện tích, bán kính đường tròn ngoại tiếp, nửa chu vi, bán kính đường tròn nội tiếp tam giác.
a) \(p = 14\).
b) \(S = 13\sqrt 5 \).
c) \(R = \frac{{7\sqrt 5 }}{{10}}\).
d) \(r = \sqrt 3 \).
Cho tam giác \(ABC\) có số đo các cạnh lần lượt là \(7,9\) và \(12\). Gọi \(S,R,p,r\) lần lượt là diện tích, bán kính đường tròn ngoại tiếp, nửa chu vi, bán kính đường tròn nội tiếp tam giác.
a) \(p = 14\).
b) \(S = 13\sqrt 5 \).
c) \(R = \frac{{7\sqrt 5 }}{{10}}\).
d) \(r = \sqrt 3 \).
Quảng cáo
Trả lời:
Giả sử \(a = 7,b = 9,c = 12\).
a) Đúng. Ta có \(p = \frac{{a + b + c}}{2} = \frac{{7 + 9 + 12}}{2} = 14\).
b) Sai. Theo công thức Heron, ta có:
\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {14\left( {14 - 7} \right)\left( {14 - 9} \right)\left( {14 - 12} \right)} = 14\sqrt 5 \).
c) Sai. Ta có \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{7 \cdot 9 \cdot 12}}{{4 \cdot 14\sqrt 5 }} = \frac{{27\sqrt 5 }}{{10}}\).
d) Sai. Ta có \(S = pr \Rightarrow r = \frac{S}{p} = \frac{{14\sqrt 5 }}{{14}} = \sqrt 5 \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(a = BC = \sqrt 6 ,b = CA = 2,c = AB = 1 + \sqrt 3 \).
a) Sai. \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{1}{2} \Rightarrow \widehat A = 60^\circ \).
b) Sai. \(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{\sqrt 2 }}{2} \Rightarrow \hat B = 45^\circ \).
c) Đúng. \(S = \frac{1}{2}bc\sin A = \frac{{3 + \sqrt 3 }}{2}\).
d) Đúng. \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \sqrt 2 \).
Lời giải
Áp dụng định lí côsin cho tam giác \(ABC\), ta có:
\(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB \cdot AC}} = \frac{{{4^2} + {5^2} - {6^2}}}{{2 \cdot 4 \cdot 5}} = \frac{1}{8}\).
Mà \(\widehat A < 180^\circ \) nên \(\sin A = \sqrt {1 - {{\cos }^2}A} = \sqrt {1 - \frac{1}{{64}}} = \frac{{3\sqrt 7 }}{8}\).
Áp dụng định lí sin, ta có: \[\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{6}{{2 \cdot \frac{{3\sqrt 7 }}{8}}} \approx 3\,\,\,{\rm{(cm)}}\].
Đáp án: 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.