Câu hỏi:

21/07/2025 31 Lưu

Một chiếc thuyền xuất phát từ cảng chạy ra biển theo một đường thẳng được 3 km thì rẽ sang phải theo hướng lệch với hướng ban đầu một góc \(45^\circ \) và đi thẳng theo hướng đó thêm 6 km nữa thì dừng lại. Hỏi tại vị trí mới này, chiếc thuyền cách vị trí xuất phát ban đầu của nó bao nhiêu kilômét? (Kết quả làm tròn đến chữ số hàng phần trăm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Hỏi tại vị trí mới này, chiếc thuyền cách vị trí xuất phát ban đầu của nó bao nhiêu kilômét? (Kết quả làm tròn đến chữ số hàng phần trăm). (ảnh 1) 

Ta mô hình hóa bài toán như hình vẽ trên. Khoảng cách từ vị trí mới đến vị trí ban đầu chính bằng độ dài đoạn AC. Áp dụng định lý côsin trong tam giác ABC, ta được

\(AC = \sqrt {B{A^2} + B{C^2} - 2BA \cdot BC \cdot \cos 135^\circ }  \approx 8,39{\rm{ km}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(a = BC = \sqrt 6 ,b = CA = 2,c = AB = 1 + \sqrt 3 \).

a) Sai. \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{1}{2} \Rightarrow \widehat A = 60^\circ \).

b) Sai. \(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{\sqrt 2 }}{2} \Rightarrow \hat B = 45^\circ \).

c) Đúng. \(S = \frac{1}{2}bc\sin A = \frac{{3 + \sqrt 3 }}{2}\).

d) Đúng. \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \sqrt 2 \).

Lời giải

a) Sai. Áp dụng định lí côsin trong tam giác, ta có:

\({a^2} = {b^2} + {c^2} - 2bc\cos A \Rightarrow {a^2} = {7^2} + {5^2} - 2 \cdot 7 \cdot 5 \cdot \cos 120^\circ  = 109.\)

Do đó, \(a = \sqrt {109} \;{\rm{cm}}\).

b) Sai. Ta có \({b^2} = {a^2} + {c^2} - 2ac\cos B \Rightarrow \cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{109 + {5^2} - {7^2}}}{{2\sqrt {109}  \cdot 5}} \approx 0,81\).

c) Đúng. Tương tự, \(\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \frac{{109 + {7^2} - {5^2}}}{{2\sqrt {109}  \cdot 7}} \approx 0,91\).

d) Đúng. Áp dụng định lí sin trong tam giác, ta có:

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\) nên \(R = \frac{a}{{2 \cdot \sin A}} = \frac{{\sqrt {109} }}{{2 \cdot \sin 120^\circ }} \approx 6,03\,\,({\rm{cm}})\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP