Từ một miếng bìa hình tròn, bạn Nam cắt ra một hình tam giác \(ABC\) có độ dài các cạnh \(AB = 4\;{\rm{cm}},AC = 5\;{\rm{cm}},BC = 6\;{\rm{cm}}\) (Hình vẽ). Tính bán kính \(R\) của miếng bìa ban đầu (làm tròn kết quả đến hàng đơn vị theo đơn vị centimét).

Quảng cáo
Trả lời:
Áp dụng định lí côsin cho tam giác \(ABC\), ta có:
\(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB \cdot AC}} = \frac{{{4^2} + {5^2} - {6^2}}}{{2 \cdot 4 \cdot 5}} = \frac{1}{8}\).
Mà \(\widehat A < 180^\circ \) nên \(\sin A = \sqrt {1 - {{\cos }^2}A} = \sqrt {1 - \frac{1}{{64}}} = \frac{{3\sqrt 7 }}{8}\).
Áp dụng định lí sin, ta có: \[\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{6}{{2 \cdot \frac{{3\sqrt 7 }}{8}}} \approx 3\,\,\,{\rm{(cm)}}\].
Đáp án: 3.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử \(a = 7,b = 9,c = 12\).
a) Đúng. Ta có \(p = \frac{{a + b + c}}{2} = \frac{{7 + 9 + 12}}{2} = 14\).
b) Sai. Theo công thức Heron, ta có:
\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {14\left( {14 - 7} \right)\left( {14 - 9} \right)\left( {14 - 12} \right)} = 14\sqrt 5 \).
c) Sai. Ta có \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{7 \cdot 9 \cdot 12}}{{4 \cdot 14\sqrt 5 }} = \frac{{27\sqrt 5 }}{{10}}\).
d) Sai. Ta có \(S = pr \Rightarrow r = \frac{S}{p} = \frac{{14\sqrt 5 }}{{14}} = \sqrt 5 \).
Lời giải
a) Đúng. Ta có \[A{C^2} = {b^2} = {a^2} + {c^2} - 2ac \cdot \cos B = {8^2} + {5^2} - 2 \cdot 8 \cdot 5 \cdot \cos 60^\circ = 49\].
Suy ra \[AC = b = 7\].
b) Sai. Ta có \[\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{7^2} + {5^2} - {8^2}}}{{2 \cdot 7 \cdot 5}} = \frac{1}{7} \Rightarrow \widehat {BAC} \approx 81^\circ 47' < 90^\circ \].
Vậy \[\widehat {BAC}\] là góc nhọn.
c) Đúng. Nửa chu vi của tam giác \[ABC\] là: \(p = \frac{{a + b + c}}{2} = 10\).
Diện tích tam giác \[ABC\] là: \[S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = 10\sqrt 3 \].
Mặt khác \[S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{7\sqrt 3 }}{3}\].
d) Sai.
Công thức định lý sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{C}{{\sin C}} = 2R \Rightarrow \sin A = \frac{a}{{2R}};\sin B = \frac{b}{{2R}};\sin C = \frac{c}{{2R}}\).
Khi đó: \[T = \sin A - 2\sin B + \sin C = \frac{a}{{2R}} - \frac{{2b}}{{2R}} + \frac{c}{{2R}} = \frac{{a - 2b + c}}{{2R}} = \frac{{8 - 2 \cdot 7 + 5}}{{2R}} = - \frac{1}{{2R}} \ne 0\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.