Câu hỏi:

21/07/2025 6 Lưu

Cho tam giác \(ABC\), biết \(AC = b = 7,AB = c = 5,\cos A = \frac{3}{5}\).

a) \(\sin A = \frac{4}{5}\).

b) Diện tích tam giác \(ABC\) là \(S = 14\).

c) Độ dài cạnh BC là \(a = 3\sqrt 2 \).

d) Bán kính đường tròn nội tiếp tam giác \(ABC\) là \(r = 4 - \sqrt 2 \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đúng. Ta có \({\sin ^2}A = 1 - {\cos ^2}A = \frac{{16}}{{25}} \Rightarrow \sin A = \frac{4}{5}\) (vì \(\sin A > 0\)).

b) Đúng. Ta có \(S = \frac{1}{2}bc\sin A = 14\).

c) Sai. Theo định lí côsin, ta có:

\({a^2} = {b^2} + {c^2} - 2bc\cos A = {7^2} + {5^2} - 2 \cdot 7 \cdot 5 \cdot \frac{3}{5} = 32 \Rightarrow a = 4\sqrt 2 \).

d) Sai. Ta có \(p = \frac{{a + b + c}}{2} = 6 + 2\sqrt 2 \). Mà \(S = pr \Rightarrow r = \frac{S}{p} = \frac{{14}}{{6 + 2\sqrt 2 }} = 3 - \sqrt 2 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử \(a = 7,b = 9,c = 12\).

a) Đúng. Ta có \(p = \frac{{a + b + c}}{2} = \frac{{7 + 9 + 12}}{2} = 14\).

b) Sai. Theo công thức Heron, ta có:

\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = \sqrt {14\left( {14 - 7} \right)\left( {14 - 9} \right)\left( {14 - 12} \right)}  = 14\sqrt 5 \).

c) Sai. Ta có \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{7 \cdot 9 \cdot 12}}{{4 \cdot 14\sqrt 5 }} = \frac{{27\sqrt 5 }}{{10}}\).

d) Sai. Ta có \(S = pr \Rightarrow r = \frac{S}{p} = \frac{{14\sqrt 5 }}{{14}} = \sqrt 5 \).

Lời giải

Áp dụng định lí côsin cho tam giác \(ABC\), ta có:

\(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB \cdot AC}} = \frac{{{4^2} + {5^2} - {6^2}}}{{2 \cdot 4 \cdot 5}} = \frac{1}{8}\).

Mà \(\widehat A < 180^\circ \) nên \(\sin A = \sqrt {1 - {{\cos }^2}A}  = \sqrt {1 - \frac{1}{{64}}}  = \frac{{3\sqrt 7 }}{8}\).

Áp dụng định lí sin, ta có: \[\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{6}{{2 \cdot \frac{{3\sqrt 7 }}{8}}} \approx 3\,\,\,{\rm{(cm)}}\].

Đáp án: 3.

Câu 6

Phần I. Trắc nghiệm nhiều phương án lựa chọn

Cho \(\Delta ABC\) có góc \(\widehat {BAC} = 60^\circ \) và cạnh \(BC = \sqrt 3 \). Tính bán kính của đường tròn ngoại tiếp \(\Delta ABC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP