Câu hỏi:

21/07/2025 3 Lưu

Gia đình bác An có mảnh đất như hình bên dưới. Nhà nước có dự án xây bệnh viện nên thu hồi mảnh đất của bác, giá đền bù là \(1,2\) triệu đồng 1\({{\rm{m}}^{\rm{2}}}\).

 Hỏi số tiền gia đình nhà bác An nhận được khoảng bao nhiêu triệu đồng? (làm tròn kết quả đến hàng đơn vị). (ảnh 1)

Hỏi số tiền gia đình nhà bác An nhận được khoảng bao nhiêu triệu đồng? (làm tròn kết quả đến hàng đơn vị).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hỏi số tiền gia đình nhà bác An nhận được khoảng bao nhiêu triệu đồng? (làm tròn kết quả đến hàng đơn vị). (ảnh 2)

Ta có \(B{D^2} = A{D^2} + A{B^2} - 2AD \cdot AB \cdot \cos \left( {73,07^\circ } \right) \approx 517\)\( \Rightarrow BD \approx 23\,\left( {\rm{m}} \right)\).

\[{S_{ABD}} = \frac{1}{2}AD \cdot AB \cdot \sin \left( {73,07^\circ } \right) \approx 158\,\left( {{{\rm{m}}^2}} \right)\].

Nửa chu vi tam giác \(BCD\) là: \(\frac{{23 + 10 + 18}}{2} = \frac{{51}}{2} = 25,5\).

\({S_{BCD}} = \sqrt {25,5.\left( {25,5 - 23} \right)\left( {25,5 - 10} \right)\left( {25,5 - 18} \right)}  \approx 86\,\left( {{{\rm{m}}^2}} \right)\).

\({S_{ABCD}} = {S_{ABD}} + {S_{BCD}} \approx 244\,\left( {{{\rm{m}}^2}} \right)\).

Vậy số tiền gia đình nhà bác An nhận được khoảng \(244 \cdot 1,2 \approx 293\) triệu đồng.

Đáp án: \(293\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử \(a = 7,b = 9,c = 12\).

a) Đúng. Ta có \(p = \frac{{a + b + c}}{2} = \frac{{7 + 9 + 12}}{2} = 14\).

b) Sai. Theo công thức Heron, ta có:

\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = \sqrt {14\left( {14 - 7} \right)\left( {14 - 9} \right)\left( {14 - 12} \right)}  = 14\sqrt 5 \).

c) Sai. Ta có \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{7 \cdot 9 \cdot 12}}{{4 \cdot 14\sqrt 5 }} = \frac{{27\sqrt 5 }}{{10}}\).

d) Sai. Ta có \(S = pr \Rightarrow r = \frac{S}{p} = \frac{{14\sqrt 5 }}{{14}} = \sqrt 5 \).

Lời giải

a) Đúng. Ta có \[A{C^2} = {b^2} = {a^2} + {c^2} - 2ac \cdot \cos B = {8^2} + {5^2} - 2 \cdot 8 \cdot 5 \cdot \cos 60^\circ  = 49\].

Suy ra \[AC = b = 7\].

b) Sai. Ta có \[\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{7^2} + {5^2} - {8^2}}}{{2 \cdot 7 \cdot 5}} = \frac{1}{7} \Rightarrow \widehat {BAC} \approx 81^\circ 47' < 90^\circ \].

Vậy \[\widehat {BAC}\] là góc nhọn.

c) Đúng. Nửa chu vi của tam giác \[ABC\] là: \(p = \frac{{a + b + c}}{2} = 10\).

Diện tích tam giác \[ABC\] là: \[S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = 10\sqrt 3 \].

Mặt khác \[S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{7\sqrt 3 }}{3}\].

d) Sai.

Công thức định lý sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{C}{{\sin C}} = 2R \Rightarrow \sin A = \frac{a}{{2R}};\sin B = \frac{b}{{2R}};\sin C = \frac{c}{{2R}}\).

Khi đó: \[T = \sin A - 2\sin B + \sin C = \frac{a}{{2R}} - \frac{{2b}}{{2R}} + \frac{c}{{2R}} = \frac{{a - 2b + c}}{{2R}} = \frac{{8 - 2 \cdot 7 + 5}}{{2R}} =  - \frac{1}{{2R}} \ne 0\].

Câu 6

Phần I. Trắc nghiệm nhiều phương án lựa chọn

Cho \(\Delta ABC\) có góc \(\widehat {BAC} = 60^\circ \) và cạnh \(BC = \sqrt 3 \). Tính bán kính của đường tròn ngoại tiếp \(\Delta ABC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP