Câu hỏi:

21/07/2025 27 Lưu

Phần III. Trắc nghiệm trả lời ngắn

Hai bạn An và Bình cùng xuất phát từ điểm \[P\], đi theo hai hướng khác nhau và tạo với nhau một góc \(40^\circ \) để đến đích là điểm \[D\] với \[\widehat {PAD} = 100^\circ \]. Biết rằng An và Bình dừng lại để ăn trưa lần lượt tại \[A\] và \[B\] (như hình vẽ minh hoạ).

Hỏi bạn Bình phải đi bao xa nữa để đến được đích (số làm tròn đến hàng phần trăm; góc làm tròn đến hàng đơn vị)? (ảnh 1) 

Hỏi bạn Bình phải đi bao xa nữa để đến được đích (số làm tròn đến hàng phần trăm; góc làm tròn đến hàng đơn vị)?

 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét tam giác \[PAD\] có

\[PD = \sqrt {P{A^2} + A{D^2} - 2 \cdot PA \cdot AD \cdot \cos \widehat {PAD}}  = \sqrt {{8^2} + {3^2} - 2 \cdot 8 \cdot 3 \cdot \cos 100^\circ }  \approx 9,02\],

và \[\cos \widehat {APD} = \frac{{P{A^2} + P{D^2} - A{D^2}}}{{2 \cdot PA \cdot PD}} = \frac{{{8^2} + 9,{{02}^2} - {3^2}}}{{2 \cdot 8 \cdot 9,02}} \approx 0,94\] suy ra \[\widehat {APD} \approx 19^\circ \].

Xét tam giác \[PBD\] có \[\widehat {BPD} = \widehat {BPA} - \widehat {APD} \approx 40^\circ  - 19^\circ  = 21^\circ \],

và \[BD = \sqrt {P{B^2} + P{D^2} - 2 \cdot PB \cdot PD \cdot \cos \widehat {BPD}} \] \[ \approx 3,53\] (km).

Vậy bạn Bình phải đi khoảng \[3,53\] km nữa để đến đích.

Đáp án: \(3,53\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(a = BC = \sqrt 6 ,b = CA = 2,c = AB = 1 + \sqrt 3 \).

a) Sai. \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{1}{2} \Rightarrow \widehat A = 60^\circ \).

b) Sai. \(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{\sqrt 2 }}{2} \Rightarrow \hat B = 45^\circ \).

c) Đúng. \(S = \frac{1}{2}bc\sin A = \frac{{3 + \sqrt 3 }}{2}\).

d) Đúng. \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \sqrt 2 \).

Lời giải

a) Sai. Áp dụng định lí côsin trong tam giác, ta có:

\({a^2} = {b^2} + {c^2} - 2bc\cos A \Rightarrow {a^2} = {7^2} + {5^2} - 2 \cdot 7 \cdot 5 \cdot \cos 120^\circ  = 109.\)

Do đó, \(a = \sqrt {109} \;{\rm{cm}}\).

b) Sai. Ta có \({b^2} = {a^2} + {c^2} - 2ac\cos B \Rightarrow \cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{109 + {5^2} - {7^2}}}{{2\sqrt {109}  \cdot 5}} \approx 0,81\).

c) Đúng. Tương tự, \(\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \frac{{109 + {7^2} - {5^2}}}{{2\sqrt {109}  \cdot 7}} \approx 0,91\).

d) Đúng. Áp dụng định lí sin trong tam giác, ta có:

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\) nên \(R = \frac{a}{{2 \cdot \sin A}} = \frac{{\sqrt {109} }}{{2 \cdot \sin 120^\circ }} \approx 6,03\,\,({\rm{cm}})\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP