Câu hỏi:

21/07/2025 43 Lưu

 Cho tam giác \[ABC\] có \[BC = a = 8,AB = c = 5,\widehat {ABC} = 60^\circ \].

a) Độ dài cạnh \[AC = 7\].

b) \[\widehat {BAC}\] là góc tù.

c) Bán kính đường tròn ngoại tiếp tam giác \[ABC\] bằng \(\frac{{7\sqrt 3 }}{3}\).

d) Biểu thức \[T = \sin A - 2\sin B + \sin C\] có giá trị bằng 0.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Ta có \[A{C^2} = {b^2} = {a^2} + {c^2} - 2ac \cdot \cos B = {8^2} + {5^2} - 2 \cdot 8 \cdot 5 \cdot \cos 60^\circ  = 49\].

Suy ra \[AC = b = 7\].

b) Sai. Ta có \[\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{7^2} + {5^2} - {8^2}}}{{2 \cdot 7 \cdot 5}} = \frac{1}{7} \Rightarrow \widehat {BAC} \approx 81^\circ 47' < 90^\circ \].

Vậy \[\widehat {BAC}\] là góc nhọn.

c) Đúng. Nửa chu vi của tam giác \[ABC\] là: \(p = \frac{{a + b + c}}{2} = 10\).

Diện tích tam giác \[ABC\] là: \[S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = 10\sqrt 3 \].

Mặt khác \[S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{7\sqrt 3 }}{3}\].

d) Sai.

Công thức định lý sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{C}{{\sin C}} = 2R \Rightarrow \sin A = \frac{a}{{2R}};\sin B = \frac{b}{{2R}};\sin C = \frac{c}{{2R}}\).

Khi đó: \[T = \sin A - 2\sin B + \sin C = \frac{a}{{2R}} - \frac{{2b}}{{2R}} + \frac{c}{{2R}} = \frac{{a - 2b + c}}{{2R}} = \frac{{8 - 2 \cdot 7 + 5}}{{2R}} =  - \frac{1}{{2R}} \ne 0\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Áp dụng định lí côsin trong tam giác, ta có:

\({a^2} = {b^2} + {c^2} - 2bc\cos A \Rightarrow {a^2} = {7^2} + {5^2} - 2 \cdot 7 \cdot 5 \cdot \cos 120^\circ  = 109.\)

Do đó, \(a = \sqrt {109} \;{\rm{cm}}\).

b) Sai. Ta có \({b^2} = {a^2} + {c^2} - 2ac\cos B \Rightarrow \cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{109 + {5^2} - {7^2}}}{{2\sqrt {109}  \cdot 5}} \approx 0,81\).

c) Đúng. Tương tự, \(\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \frac{{109 + {7^2} - {5^2}}}{{2\sqrt {109}  \cdot 7}} \approx 0,91\).

d) Đúng. Áp dụng định lí sin trong tam giác, ta có:

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\) nên \(R = \frac{a}{{2 \cdot \sin A}} = \frac{{\sqrt {109} }}{{2 \cdot \sin 120^\circ }} \approx 6,03\,\,({\rm{cm}})\).

Câu 2

Lời giải

Đáp án đúng là: A

Ta có \(p = \frac{{a + b + c}}{2} = \frac{{13 + 14 + 15}}{2} = 21\).

Vậy \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = 84\) (công thức Heron).

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP