Câu hỏi:

21/07/2025 5 Lưu

Cho \({\rm{tan}}\alpha  = 3\) và \({\rm{0}}^\circ  < \alpha  < 90^\circ \).

a) \(\cot \alpha  = \frac{1}{3}.\)

b) \(\cos \alpha  = \frac{{\sqrt {10} }}{{10}}.\)

c) \(5{\sin ^2}\alpha  - 3{\cos ^2}\alpha  + \cot \left( {90^\circ  - \alpha } \right) = \frac{{36}}{7}\).

d) Giá trị của biểu thức \(E = \frac{{{{\sin }^2}\alpha  - 5{{\cos }^2}\alpha }}{{2{{\sin }^2}\alpha  + 3\sin \alpha \cos \alpha  + {{\cos }^2}\alpha }} = \frac{a}{b}\) với \(\left( {a;b} \right) = 1\) và \(a,b\, \in {\mathbb{N}^*}\). Khi đó \[a + b = 8\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đúng. Ta có \(\tan \alpha  = 3\) nên \(\cot \alpha  = \frac{1}{{\tan \alpha }} = \frac{1}{3}\).

b) Đúng. Ta có \(\frac{1}{{{{\cos }^2}\alpha }} = 1 + {\tan ^2}\alpha  = 1 + {3^2} = 10\) \[ \Rightarrow {\cos ^2}\alpha  = \frac{1}{{10}}\] \( \Leftrightarrow \left[ \begin{array}{l}{\rm{cos}}\alpha  = \frac{1}{{\sqrt {10} }}\\{\rm{cos}}\alpha  =  - \frac{1}{{\sqrt {10} }}\end{array} \right.\).

Vì \({\rm{0}}^\circ  < \alpha  < 90^\circ \) nên \(\cos \alpha  > 0\)\( \Rightarrow {\rm{cos}}\alpha  = \frac{1}{{\sqrt {10} }} = \frac{{\sqrt {10} }}{{10}}\).

c) Sai. Vì \[{\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\]\[ \Rightarrow {\sin ^2}\alpha  = {\rm{1}} - {\cos ^2}\alpha  = 1 - \frac{1}{{10}} = \frac{9}{{10}}\];

\(\cot \left( {90^\circ  - \alpha } \right) = \tan \alpha  = 3\).

Suy ra \(5{\sin ^2}\alpha  - 3{\cos ^2}\alpha  + \cot \left( {90^\circ  - \alpha } \right) = 5 \cdot \frac{9}{{10}} - 3 \cdot \frac{1}{{10}} + 3 = \frac{{36}}{5}\).

d) Đúng. Vì \({\rm{tan}}\alpha  = 3\) nên \(\cos \alpha  \ne 0\).

Chia tử và mẫu của \(E\) cho \({\cos ^2}\alpha  \ne 0\), ta được:

\(E = \frac{{\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} - \frac{{5{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }}}}{{\frac{{2{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{3\sin \alpha \cos \alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }}}} = \frac{{{\rm{ta}}{{\rm{n}}^2}\alpha  - 5}}{{2{\rm{ta}}{{\rm{n}}^2}\alpha  + 3{\rm{tan}}\alpha  + 1}}\,\)

\(E = \frac{{9 - 5}}{{18 + 9 + 1}} = \frac{4}{{28}} = \frac{1}{7} = \frac{a}{b} \Rightarrow a = 1,b = 7 \Rightarrow a + b = 8\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Ta có \(\cot \alpha  = \frac{1}{{\tan \alpha }} = \frac{1}{2}\).

b) Sai. \(\tan \alpha  = \frac{{\sin \alpha }}{{{\rm{cos}}\alpha }} = 2 > 0 \Rightarrow \sin \alpha  \cdot {\rm{cos}}\alpha  > 0\).

c) Đúng. Vì \(0^\circ  < \alpha  < 90^\circ \) nên \({\rm{cos}}\alpha  > 0\).

Ta có \(1 + {\tan ^2}\alpha  = \frac{1}{{{\rm{co}}{{\rm{s}}^2}\alpha }} \Rightarrow {\rm{co}}{{\rm{s}}^2}\alpha  = \frac{1}{{1 + {2^2}}} = \frac{1}{5} \Rightarrow {\rm{cos}}\alpha  = \frac{{\sqrt 5 }}{5} = \frac{1}{{\sqrt 5 }}\).

d) Sai. Ta có \(\tan \alpha  = \frac{{\sin \alpha }}{{{\rm{cos}}\alpha }} \Rightarrow \sin \alpha  = \tan \alpha  \cdot {\rm{cos}}\alpha  = \frac{{2\sqrt 5 }}{5}\).

Suy ra \({\rm{sin}}\alpha \,{\rm{ + }}\,{\rm{cos}}\alpha  = \frac{{2\sqrt 5 }}{5} + \frac{{\sqrt 5 }}{5} = \frac{{3\sqrt 5 }}{5}\).

Lời giải

Ta có \[P = \sin \left( {90^\circ  - \alpha } \right) - \cos \left( {180^\circ  - \alpha } \right) = \cos \alpha  - \left( { - \cos \alpha } \right) = 2\cos \alpha \].

Mặt khác \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1 \Rightarrow {\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = 1 - {\left( {\frac{1}{3}} \right)^2} = \frac{8}{9} \Leftrightarrow \left[ \begin{array}{l}\cos \alpha  = \frac{{2\sqrt 2 }}{3}\\\cos \alpha  =  - \frac{{2\sqrt 2 }}{3}\end{array} \right.\).

Lại có \(0^\circ  < \alpha  < 90^\circ \) nên \(\cos \alpha  > 0\), từ đó ta được \(\cos \alpha  = \frac{{2\sqrt 2 }}{3}\).

Vậy \[P = 2\cos \alpha  = \frac{{4\sqrt 2 }}{3} \approx 1,89\].

Đáp án: \(1,89\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP