Giá trị lớn nhất của biết thức \[F\left( {x;y} \right) = x + 2y\] với điều kiện \[\left\{ {\begin{array}{*{20}{c}}{0 \le y \le 4}\\{x \ge 0}\\{x - y - 1 \le 0}\\{x + 2y - 10 \le 0}\end{array}} \right.\] là
Quảng cáo
Trả lời:
Đáp án đúng là: C
Vẽ đường thẳng \({d_1}:x - y - 1 = 0\), đường thẳng \({d_1}\) qua hai điểm \(\left( {0;\, - 1} \right)\) và \(\left( {1;\,0} \right)\).
Vẽ đường thẳng \({d_2}:x + 2y - 10 = 0\), đường thẳng \({d_2}\) qua hai điểm \(\left( {0;\,5} \right)\) và \(\left( {2;\,4} \right)\).
Vẽ đường thẳng \({d_3}:y = 4\).
Miền nghiệm là ngũ giác \(ABCOE\) với \(A\left( {4;\,3} \right),\,B\left( {2;\,4} \right),\,C\left( {0;\,4} \right),\,E\left( {1;\,0} \right)\).
Ta có: \[F\left( {4;3} \right) = 10\], \[F\left( {2;4} \right) = 10\], \[F\left( {0;4} \right) = 8\], \[F\left( {1;0} \right) = 1\], \[F\left( {0;0} \right) = 0\].
Vậy giá trị lớn nhất của biết thức \[F\left( {x;y} \right) = x + 2y\] bằng \(10\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Hệ bất phương trình bậc nhất hai ẩn \(x,y\) để biểu diễn lượng protein cần thiết trong một ngày cho một người đàn ông là: \(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}26x + 22y \ge 56\\26x + 22y \le 91\\x \le y\\x \ge 0\\y \ge 0\end{array}\end{array}} \right.\).
b) Sai. Miền nghiệm của hệ trên là miền tứ giác \(ABCD\) với \(A\left( {\frac{7}{6};\frac{7}{6}} \right),B\left( {\frac{{91}}{{48}};\frac{{91}}{{48}}} \right)\), \(C\left( {0;\frac{{91}}{{22}}} \right)\)\(D\left( {0;\frac{{28}}{{11}}} \right)\) ở hình dưới đây:
c) Đúng. Một nghiệm \(\left( {{x_0};{y_0}} \right)\) của hệ bất phương trình với \({x_0},{y_0}\) là \(\left( {{x_0};{y_0}} \right) = \left( {1;2} \right)\).
d) Sai. Điểm \(B\left( {\frac{{91}}{{48}};\frac{{91}}{{48}}} \right)\) là điểm có hoành độ lớn nhất.
Lời giải
a) Đúng. Gọi \(x,y\) lần lượt là số gói thực phẩm loại \(X\), loại \(Y\) mà bà Lan cần dùng trong một ngày. Ta có: \(0 \le x \le 12,0 \le y \le 12\).
Số đơn vị canxi được cung cấp là \(20x + 20y\). Ta có: \(20x + 20y \ge 240\) hay \(x + y \ge 12\).
Số đơn vị sắt được cung cấp là \(20x + 10y\). Ta có: \(20x + 10y \ge 160\) hay \(2x + y \ge 16\).
Số đơn vị vitamin \(B\) được cung cấp là \(10x + 20y\). Ta có: \(10x + 20y \ge 140\) hay \(x + 2y \ge 14.\)
Ta có hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x + y \ge 12}\\{2x + y \ge 16}\\{x + 2y \ge 14}\\{0 \le x \le 12}\\{0 \le y \le 12}\end{array}} \right.\) .
b) Đúng. Miền nghiệm của hệ bất phương trình là miền ngũ giác \(ABCDE\) với \(A(12;12)\), \(B(2;12),C(4;8),D(10;2),E(12;1)\)
c) Đúng. Số tiền bà Lan dùng để mua các gói thực phẩm \(X,Y\) trong một ngày là: \(T = 20x + 25y\) (nghìn đồng).
Tính giá trị của \(T\) tại các cặp số \((x;y)\) là toạ độ các đỉnh trên rồi so sánh các giá trị đó, ta được \(T\) đạt giá trị nhỏ nhất bằng 250 nghìn đồng tại \(x = 10;y = 2\).
Vậy để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\) nhưng với chi phí thấp nhất thì mỗi ngày bà Lan cần dùng 10 gói thực phẩm loại \(X\) và 2 gói thực phẩm loại \(Y\).
d) Sai. Điểm \(\left( {10;8} \right)\) thuộc miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.