Câu hỏi:

22/07/2025 3 Lưu

Số tập con của tập hợp \(A = \left\{ {x \in \mathbb{R}|3{{\left( {{x^2} + x} \right)}^2} - 2{x^2} - 2x = 0} \right\}\) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Giải phương trình \(3{\left( {{x^2} + x} \right)^2} - 2\left( {{x^2} + x} \right) = 0\).

Đặt \({x^2} + x = t\) ta có phương trình \(3{t^2} - 2t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = \frac{2}{3}\end{array} \right.\).

Với \(t = 0\) ta có \({x^2} + x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 1\end{array} \right.\).

Với \(t = \frac{2}{3}\) ta có: \({x^2} + x = \frac{2}{3}\)\( \Leftrightarrow 3{x^2} + 3x - 2 = 0 \Leftrightarrow x = \frac{{ - 3 \pm \sqrt {33} }}{3}\).

Vậy A có 4 phần tử suy ra số tập con của A là \({2^4} = 16\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[x\] là số học sinh chỉ đăng kí môn cờ vua.

\[y\] là số học sinh chỉ đăng kí môn cờ tướng.

\[z\] là số học sinh tham gia cả hai môn này.

Số học sinh đăng kí môn cờ vua là \[17\] học sinh \[ \Rightarrow x + z = 17\]\[ \Leftrightarrow x = 17 - z\].

Số học sinh đăng kí môn cờ tướng là \[28\]học sinh \[ \Rightarrow y + z = 28\]\[ \Leftrightarrow y = 28 - z\].

Vì tổng số học sinh lớp đó là \[40\] học sinh nên ta có:

\[x + y + z = 40\]\[ \Leftrightarrow 17 - z + 28 - z + z = 40\]\[ \Leftrightarrow z = 5\].

Vậy số học sinh đăng kí cả hai môn cờ là \[5\] học sinh.

a) Sai. Có \(23\) học sinh chỉ đăng kí môn cờ tướng.

b) Sai. Số học sinh chỉ đăng kí môn cờ vua là \[12\] học sinh.

c) Đúng. Số học sinh đăng kí môn cờ tướng là \[28\] học sinh.

d) Đúng. Có tất cả \(5\) học sinh đăng kí cả hai môn cờ.

Lời giải

Ta có \(A = \left( { - \infty ; - 2} \right]\) và \(B = \left( { - 5;3} \right]\) suy ra \(A \cap B = \left( { - 5; - 2} \right]\).

Các giá trị nguyên thỏa mãn là \(\left\{ { - 4; - 3; - 2} \right\}\).

Tổng các giá trị nguyên là \( - 4 + \left( { - 3} \right) + \left( { - 2} \right) =  - 9\).

Đáp án: −9.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP