Câu hỏi:

25/07/2025 17 Lưu

Cho \[\int\limits_0^1 {f(x)} \]dx\( = - 1\); \[\int\limits_0^3 {f(x)} \]dx\( = 5\). Tính \[\int\limits_1^3 {f(x)} \]dx

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

C. Ta có \[\int\limits_0^3 {f(x)} \]dx =\[\int\limits_0^1 {f(x)} \]dx +\[\int\limits_1^3 {f(x)} \]dx\[ \Rightarrow \int\limits_1^3 {f(x)} \]dx =\[\int\limits_0^3 {f(x)} \]dx \[ - \int\limits_0^1 {f(x)} \]dx = 5+ 1= 6

Vậy \[\int\limits_1^3 {f(x)} \]dx = 6

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Ta có: \(\int\limits_1^2 {\left[ {f\left( x \right) - g\left( x \right)} \right]\,} {\rm{d}}x = \int\limits_1^2 {f\left( x \right)\,} {\rm{d}}x - \int\limits_1^2 {g\left( x \right)\,} {\rm{d}}x = 2 - 6 = - 4\).

Lời giải

Chọn C

\[\int_0^1 {\left[ {f(x) + g(x)} \right]{\rm{d}}x} = \int_0^1 {f(x){\rm{d}}x} + \int_0^1 {g(x){\rm{d}}x} = 2 + ( - 4) = - 2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP