Câu hỏi:

25/07/2025 41 Lưu

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_0^4 {f\left( x \right)} \,{\rm{d}}x = 10\), \(\int\limits_3^4 {f\left( x \right)} \,{\rm{d}}x = 4\). Tích phân \(\int\limits_0^3 {f\left( x \right)} \,{\rm{d}}x\) bằng

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Theo tính chất của tích phân, ta có: \(\int\limits_0^3 {f\left( x \right)} \,{\rm{d}}x + \int\limits_3^4 {f\left( x \right)} \,{\rm{d}}x = \int\limits_0^4 {f\left( x \right)} \,{\rm{d}}x\).

Suy ra: \(\int\limits_0^3 {f\left( x \right)} \,{\rm{d}}x\)\( = \int\limits_0^4 {f\left( x \right)} \,{\rm{d}}x - \int\limits_3^4 {f\left( x \right)} \,{\rm{d}}x\)\( = 10 - 4\)\( = 6\).

Vậy \(\int\limits_0^3 {f\left( x \right)} \,{\rm{d}}x = 6\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Ta có: \(I = \int\limits_1^{12} {f\left( x \right)} \,{\rm{d}}x = \int\limits_1^8 {f\left( x \right)} \,{\rm{d}}x + \int\limits_8^{12} {f\left( x \right)} \,{\rm{d}}x\). \( = \int\limits_1^8 {f\left( x \right)} \,{\rm{d}}x + \int\limits_4^{12} {f\left( x \right)} \,{\rm{d}}x - \int\limits_4^8 {f\left( x \right)} \,{\rm{d}}x = 9 + 3 - 5 = 7\).

Lời giải

C. Ta có \[\int\limits_0^3 {f(x)} \]dx =\[\int\limits_0^1 {f(x)} \]dx +\[\int\limits_1^3 {f(x)} \]dx\[ \Rightarrow \int\limits_1^3 {f(x)} \]dx =\[\int\limits_0^3 {f(x)} \]dx \[ - \int\limits_0^1 {f(x)} \]dx = 5+ 1= 6

Vậy \[\int\limits_1^3 {f(x)} \]dx = 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP