Một ôtô đang dừng và bắt đầu chuyển động theo một đường thẳng với gia tốc \(a\left( t \right) = 6 - 2t\,\,\left( {m/{s^2}} \right)\), trong đó \[t\] là khoảng thời gian tính bằng giây kể từ lúc ôtô bắt đầu chuyển động. Hỏi quảng đường ôtô đi được từ lúc bắt đầu chuyển động đến khi vận tốc của ôtô đạt giá trị lớn nhất là bao nhiêu mét?
Trả lời:……………………………..
Một ôtô đang dừng và bắt đầu chuyển động theo một đường thẳng với gia tốc \(a\left( t \right) = 6 - 2t\,\,\left( {m/{s^2}} \right)\), trong đó \[t\] là khoảng thời gian tính bằng giây kể từ lúc ôtô bắt đầu chuyển động. Hỏi quảng đường ôtô đi được từ lúc bắt đầu chuyển động đến khi vận tốc của ôtô đạt giá trị lớn nhất là bao nhiêu mét?
Trả lời:……………………………..
Câu hỏi trong đề: (Trả lời ngắn) 26 bài tập Tích phân (có lời giải) !!
Quảng cáo
Trả lời:
\(a\left( t \right) = 6 - 2t\,\,\left( {m/{s^2}} \right)\)\( \Rightarrow v\left( t \right) = \int {\left( {6 - 2t} \right)dt} = 6t - {t^2} + C\)
Xe dừng và bắt đầu chuyển động nên khi \(t = 0\) thì \(v = 0 \Rightarrow C = 0\)\( \Rightarrow v\left( t \right) = 6t - {t^2}\).
\(v\left( t \right) = 6t - {t^2}\) là hàm số bậc 2 nên đạt GTLN khi \(t = - \frac{b}{{2a}} = 3\,\,\left( s \right)\)
Quảng đường xe đi trong 3 giây đầu là: \(S = \int\limits_0^3 {\left( {6t - {t^2}} \right)dt} = 18m\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có 1 giờ 30 phút = 1,5 giờ \( \Rightarrow S = \int\limits_0^{1,5} {v(t){\rm{d}}t} \).
Đồ thị \[v = v(t)\] đi qua gốc tọa độ nên \[v(t)\] có dạng \[v(t) = a{t^2} + bt\].
Đồ thị \[v = v(t)\] có đỉnh là I(1;5) nên \[\left\{ \begin{array}{l} - \frac{b}{{2a}} = 1\\a + b = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 2a\\a + b = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 5\\b = 10\end{array} \right. \Rightarrow v(t) = - 5{t^2} + 10t\]
\(S = \int\limits_0^{1,5} {\left( { - 5{t^2} + 10t} \right){\rm{d}}t} = \frac{{45}}{8} \approx 5,63\).
Lời giải
Giai đoạn 1: Xe bắt đầu chuyển động đến khi gặp chướng ngại vật.
Quãng đường xe đi được là:
\({S_1} = \int\limits_0^{12} {{v_1}\left( t \right){\rm{d}}t} \) \( = \int\limits_0^{12} {2t{\rm{d}}t} \) \( = \left. {{t^2}} \right|_0^{12}\) \( = 144\,\left( {\rm{m}} \right)\).
Giai đoạn 2: Xe gặp chướng ngại vật đến khi dừng hẳn.
Ôtô chuyển động chậm dần đều với vận tốc \({v_2}\left( t \right) = \int {a{\rm{d}}t} = - 12t + c\).
Vận tốc của xe khi gặp chướng ngại vật là: \({v_2}\left( 0 \right) = {v_1}\left( {12} \right) = 2.12 = 24\,\left( {{\rm{m/s}}} \right)\).
\( \Rightarrow - 12.0 + c = 24\)\( \Rightarrow c = 24\)\( \Rightarrow {v_2}\left( t \right) = - 12t + 24\).
Thời gian khi xe gặp chướng ngại vật đến khi xe dừng hẳn là nghiệm phương trình:
\( - 12t + 24 = 0\)\( \Leftrightarrow t = 2\).
Khi đó, quãng đường xe đi được là:
\({S_2} = \int\limits_0^2 {{v_2}\left( t \right){\rm{d}}t} \)\( = \int\limits_0^2 {\left( { - 12t + 24} \right){\rm{d}}t} \) \( = \left. {\left( { - 6{t^2} + 24t} \right)} \right|_0^2 = 24\,\left( {\rm{m}} \right)\).
Vậy tổng quãng đường xe đi được là: \(S = {S_1} + {S_2} = 168\,\left( {\rm{m}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.