Câu hỏi:

27/07/2025 19 Lưu

Một vật chuyển động trong 3 giờ với vận tốc \(v(km/h)\) phụ thuộc vào thời gian \(t(h)\) có đồ thị vận tốc như hình bên. Trong thời gian 1 giờ kể từ khi bắt đầu chuyển động, đồ thị đó là một phần của đường parabol có đỉnh \(I(2;9)\) và trục đối xứng song song với trục tung, khoảng thời gian còn lại đồ thị là một đoạn thẳng song song với trục hoành. Tính quãng đường \(s\) mà vật chuyển động được trong 3 giờ đó (kết quả làm tròn đến hàng phần trăm).

(Trả lời ngắn) Một vật chuyển động trong 3 giờ với vận tốc v(km/h) phụ thuộc vào thời gian t(h) có đồ thị vận tốc như hình bên. Trong thời gian 1 giờ kể từ khi bắt đầu chuyển động, đồ thị đó là một phần của đường parabol có đỉnh  (ảnh 1)
 

Trả lời:……………………………..

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi phương trình của parabol \(v = a{t^2} + bt + c\) ta có hệ như sau: \(\left\{ {\begin{array}{*{20}{l}}{c = 4}\\{4a + 2b + c = 9}\\{ - \frac{b}{{2a}} = 2}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 5\\c = 4\\a =  - \frac{5}{4}\end{array} \right.\)

Với \(t = 1\) ta có \(v = \frac{{31}}{4}\).

Vậy quãng đường vật chuyển động được là \(s = \int\limits_0^1 {\left( { - \frac{5}{4}{t^2} + 5t + 4} \right)} dt + \int\limits_1^3 {\frac{{31}}{4}} dt = \frac{{259}}{{12}} \approx {\rm{21}}{\rm{,583}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có 1 giờ 30 phút = 1,5 giờ \( \Rightarrow S = \int\limits_0^{1,5} {v(t){\rm{d}}t} \).

Đồ thị \[v = v(t)\] đi qua gốc tọa độ nên \[v(t)\] có dạng \[v(t) = a{t^2} + bt\].

Đồ thị \[v = v(t)\] có đỉnh là I(1;5) nên \[\left\{ \begin{array}{l} - \frac{b}{{2a}} = 1\\a + b = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b =  - 2a\\a + b = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 5\\b = 10\end{array} \right. \Rightarrow v(t) =  - 5{t^2} + 10t\]

\(S = \int\limits_0^{1,5} {\left( { - 5{t^2} + 10t} \right){\rm{d}}t}  = \frac{{45}}{8} \approx 5,63\).

Lời giải

Giai đoạn 1: Xe bắt đầu chuyển động đến khi gặp chướng ngại vật.

Quãng đường xe đi được là:

\({S_1} = \int\limits_0^{12} {{v_1}\left( t \right){\rm{d}}t} \) \( = \int\limits_0^{12} {2t{\rm{d}}t} \) \( = \left. {{t^2}} \right|_0^{12}\) \( = 144\,\left( {\rm{m}} \right)\).

Giai đoạn 2: Xe gặp chướng ngại vật đến khi dừng hẳn.

Ôtô chuyển động chậm dần đều với vận tốc \({v_2}\left( t \right) = \int {a{\rm{d}}t}  =  - 12t + c\).

Vận tốc của xe khi gặp chướng ngại vật là: \({v_2}\left( 0 \right) = {v_1}\left( {12} \right) = 2.12 = 24\,\left( {{\rm{m/s}}} \right)\).

\( \Rightarrow  - 12.0 + c = 24\)\( \Rightarrow c = 24\)\( \Rightarrow {v_2}\left( t \right) =  - 12t + 24\).

Thời gian khi xe gặp chướng ngại vật đến khi xe dừng hẳn là nghiệm phương trình:

\( - 12t + 24 = 0\)\( \Leftrightarrow t = 2\).

Khi đó, quãng đường xe đi được là:

\({S_2} = \int\limits_0^2 {{v_2}\left( t \right){\rm{d}}t} \)\( = \int\limits_0^2 {\left( { - 12t + 24} \right){\rm{d}}t} \) \( = \left. {\left( { - 6{t^2} + 24t} \right)} \right|_0^2 = 24\,\left( {\rm{m}} \right)\).

Vậy tổng quãng đường xe đi được là: \(S = {S_1} + {S_2} = 168\,\left( {\rm{m}} \right)\).