Một vật chuyển động trong 3 giờ với vận tốc \(v(km/h)\) phụ thuộc vào thời gian \(t(h)\) có đồ thị vận tốc như hình bên. Trong thời gian 1 giờ kể từ khi bắt đầu chuyển động, đồ thị đó là một phần của đường parabol có đỉnh \(I(2;9)\) và trục đối xứng song song với trục tung, khoảng thời gian còn lại đồ thị là một đoạn thẳng song song với trục hoành. Tính quãng đường \(s\) mà vật chuyển động được trong 3 giờ đó (kết quả làm tròn đến hàng phần trăm).
Trả lời:……………………………..
Một vật chuyển động trong 3 giờ với vận tốc \(v(km/h)\) phụ thuộc vào thời gian \(t(h)\) có đồ thị vận tốc như hình bên. Trong thời gian 1 giờ kể từ khi bắt đầu chuyển động, đồ thị đó là một phần của đường parabol có đỉnh \(I(2;9)\) và trục đối xứng song song với trục tung, khoảng thời gian còn lại đồ thị là một đoạn thẳng song song với trục hoành. Tính quãng đường \(s\) mà vật chuyển động được trong 3 giờ đó (kết quả làm tròn đến hàng phần trăm).

Trả lời:……………………………..
Câu hỏi trong đề: (Trả lời ngắn) 26 bài tập Tích phân (có lời giải) !!
Quảng cáo
Trả lời:
Gọi phương trình của parabol \(v = a{t^2} + bt + c\) ta có hệ như sau: \(\left\{ {\begin{array}{*{20}{l}}{c = 4}\\{4a + 2b + c = 9}\\{ - \frac{b}{{2a}} = 2}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 5\\c = 4\\a = - \frac{5}{4}\end{array} \right.\)
Với \(t = 1\) ta có \(v = \frac{{31}}{4}\).
Vậy quãng đường vật chuyển động được là \(s = \int\limits_0^1 {\left( { - \frac{5}{4}{t^2} + 5t + 4} \right)} dt + \int\limits_1^3 {\frac{{31}}{4}} dt = \frac{{259}}{{12}} \approx {\rm{21}}{\rm{,583}}\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
- Tại thời điểm \(t = 6\)vật đang chuyển động với vận tốc \({v_0}\) nên có \(v(6) = {v_0}\)\( \Leftrightarrow - \frac{5}{2}.6 + a\,\, = {v_0} \Leftrightarrow a\,\, = {v_0} + 15\), suy ra \(v(t) = - \frac{5}{2}t + {v_0} + 15\).
- Gọi \(k\)là thời điểm vật dừng hẳn, vậy ta có \(v(k) = 0 \Leftrightarrow k = \frac{2}{5}.\left( {{v_0} + 15} \right) \Leftrightarrow k = \frac{{2{v_0}}}{5} + 6\).
- Tổng quãng đường vật đi được là \[80 = 6.{v_0} + \int\limits_6^k {\left( { - \frac{5}{2}t + {v_0} + 15} \right)dt} \]
\[\begin{array}{l} \Leftrightarrow 80 = 6.{v_0} + \left. {\left( { - \frac{5}{4}{t^2} + {v_0}.t + 15t} \right)} \right|_6^k\\ \Leftrightarrow 80 = 6.{v_0} - \frac{5}{4}({k^2} - {6^2}) + {v_0}.(k - 6) + 15(k - 6)\\ \Leftrightarrow 80 = 6.{v_0} - \frac{5}{4}\left( {\frac{{4{{\left( {{v_0}} \right)}^2}}}{{25}} + \frac{{24{v_0}}}{5}} \right) + {v_0}.\frac{{2{v_0}}}{5} + 15.\frac{{2{v_0}}}{5}\\ \Leftrightarrow {\left( {{v_0}} \right)^2} + 36.{v_0} - 400 = 0\\ \Leftrightarrow {v_0} = 10\end{array}\]
Lời giải
\[\frac{{545}}{6}m\]
Gọi Parapol \[\left( P \right):y = a{x^2} + bx + c\] khi \[0 \le t \le 5\left( s \right)\]
Do \[\left( P \right):y = a{x^2} + bx + c\] đi qua \[I\left( {3;2} \right);A\left( {0;11} \right)\] nên
\[\left\{ \begin{array}{l}4a + 2b + c = 3\\c = 11\\4a + b = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 2\\b = - 8\\c = 11\end{array} \right..\]
Khi đó quãng đường vật di chuyển trong khoảng thời gian từ \[0 \le t \le 5\left( s \right)\] là \[S = \int\limits_0^5 {\left( {2{x^2} - 8x + 11} \right)dx = \frac{{115}}{3}} \left( m \right)\]
Ta có \[f\left( 5 \right) = 21\]
Gọi \[d:y = ax + b\] khi \[5 \le t \le 10\left( s \right)\] do \[d\] đi qua điểm \[B\left( {5;21} \right)\] và \[C\left( {10;0} \right)\] nên:
\[\left\{ \begin{array}{l}5a + b = 11\\10a + b = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = - \frac{{21}}{5}\\b = 42\end{array} \right..\]
Khi đó quãng đường vật di chuyển trong khoảng thời gian từ \[5 \le t \le 10\left( s \right)\] là \[S = \int\limits_5^{10} {\left( { - \frac{{26}}{5}x + 52} \right)dx = \frac{{105}}{2}} \left( m \right)\]
Quãng đường đi được chất điểm trong thời gian \[0 \le t \le 10\left( s \right)\] là \[S = \frac{{115}}{3} + \frac{{105}}{2} = \frac{{545}}{6}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


