Câu hỏi:

28/07/2025 37 Lưu

Một vật chuyển động trong 4 giờ với vận tốc \(v\) (km/h) phụ thuộc thời gian \(t\) (h) có đồ thị của vận tốc như hình bên. Trong khoảng thời gian \(3\) giờ kể từ khi bắt đầu chuyển động, đồ thị đó là một phần của đường parabol có đỉnh \(I\left( {2;\;9} \right)\) với trục đối xứng song song với trục tung, khoảng thời gian còn lại đồ thị là một đoạn thẳng song song với trục hoành. Tính quãng đường \(s\) mà vật di chuyển được trong \(4\) giờ đó.

(Trả lời ngắn) Câu 22.	Một vật chuyển động trong 4 giờ với vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị của vận tốc như hình bên. Trong khoảng thời gian (ảnh 1)

Trả lời:……………………………..

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: \[s = 28,5\] (km)

Gọi \[\left( P \right):y = a{x^2} + bx + c\].

Vì \[\left( P \right)\] qua \[O\left( {0;0} \right)\] và có đỉnh \[I\left( {2;9} \right)\] nên dễ tìm được phương trình là \[y = \frac{{ - 9}}{4}{x^2} + 9x\].

Ngoài ra tại \[x = 3\] ta có \[y = \frac{{27}}{4}\]

Vậy quãng đuờng cần tìm là:\[S = \int\limits_0^3 {\left( {\frac{{ - 9}}{4}{x^2} + 9x} \right)} {\rm{d}}x + \int\limits_3^4 {\frac{{27}}{4}{\rm{d}}} x = 27\;\;(km)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có 1 giờ 30 phút = 1,5 giờ \( \Rightarrow S = \int\limits_0^{1,5} {v(t){\rm{d}}t} \).

Đồ thị \[v = v(t)\] đi qua gốc tọa độ nên \[v(t)\] có dạng \[v(t) = a{t^2} + bt\].

Đồ thị \[v = v(t)\] có đỉnh là I(1;5) nên \[\left\{ \begin{array}{l} - \frac{b}{{2a}} = 1\\a + b = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b =  - 2a\\a + b = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 5\\b = 10\end{array} \right. \Rightarrow v(t) =  - 5{t^2} + 10t\]

\(S = \int\limits_0^{1,5} {\left( { - 5{t^2} + 10t} \right){\rm{d}}t}  = \frac{{45}}{8} \approx 5,63\).

Lời giải

Giai đoạn 1: Xe bắt đầu chuyển động đến khi gặp chướng ngại vật.

Quãng đường xe đi được là:

\({S_1} = \int\limits_0^{12} {{v_1}\left( t \right){\rm{d}}t} \) \( = \int\limits_0^{12} {2t{\rm{d}}t} \) \( = \left. {{t^2}} \right|_0^{12}\) \( = 144\,\left( {\rm{m}} \right)\).

Giai đoạn 2: Xe gặp chướng ngại vật đến khi dừng hẳn.

Ôtô chuyển động chậm dần đều với vận tốc \({v_2}\left( t \right) = \int {a{\rm{d}}t}  =  - 12t + c\).

Vận tốc của xe khi gặp chướng ngại vật là: \({v_2}\left( 0 \right) = {v_1}\left( {12} \right) = 2.12 = 24\,\left( {{\rm{m/s}}} \right)\).

\( \Rightarrow  - 12.0 + c = 24\)\( \Rightarrow c = 24\)\( \Rightarrow {v_2}\left( t \right) =  - 12t + 24\).

Thời gian khi xe gặp chướng ngại vật đến khi xe dừng hẳn là nghiệm phương trình:

\( - 12t + 24 = 0\)\( \Leftrightarrow t = 2\).

Khi đó, quãng đường xe đi được là:

\({S_2} = \int\limits_0^2 {{v_2}\left( t \right){\rm{d}}t} \)\( = \int\limits_0^2 {\left( { - 12t + 24} \right){\rm{d}}t} \) \( = \left. {\left( { - 6{t^2} + 24t} \right)} \right|_0^2 = 24\,\left( {\rm{m}} \right)\).

Vậy tổng quãng đường xe đi được là: \(S = {S_1} + {S_2} = 168\,\left( {\rm{m}} \right)\).