Câu hỏi:

27/07/2025 331 Lưu

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD. Mặt phẳng (α) đi qua MN và cắt SB tại K, cắt SC tại H.

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD. Mặt phẳng (α) đi qua MN và cắt SB tại K, cắt SC tại H. Chọn phát biểu đúng. (ảnh 1)

Chọn phát biểu đúng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD. Mặt phẳng (α) đi qua MN và cắt SB tại K, cắt SC tại H. Chọn phát biểu đúng. (ảnh 2)

Ta có \(\left\{ \begin{array}{l}\left( \alpha \right) \cap \left( {ABCD} \right) = MN\\\left( \alpha \right) \cap \left( {SBC} \right) = HK\\\left( {ABCD} \right) \cap \left( {SBC} \right) = BC\\MN//BC\end{array} \right. \Rightarrow MN//BC//HK\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD và một điểm S không thuộc mặt phẳng (ABCD), các điểm M, N lần lượt là trung điểm của đoạn thẳng AB, SC. Gọi O = AC  BD.a) SO là giao tuyến của hai mặt phẳng (SAC) và ( (ảnh 1)

a) SO là giao tuyến của hai mặt phẳng (SAC) và (SBD).

b) Trong mặt phẳng (ABCD) có O = AC Ç BD.

Trong (SAC), gọi I = SO Ç AN.

Ta có \(\left\{ \begin{array}{l}I \in AN\\I \in SO,SO \subset \left( {SBD} \right)\end{array} \right. \Rightarrow I = AN \cap \left( {SBD} \right)\).

Vậy điểm I là điểm nằm trên đường thẳng SO.

c) Trong (ABCD), gọi P = CM Ç BD.

Trong (SCM), gọi J = MN Ç SP.

Ta có \(\left\{ \begin{array}{l}J \in MN\\J \in SP,SP \subset \left( {SBD} \right)\end{array} \right. \Rightarrow J = MN \cap \left( {SBD} \right)\).

Vậy J là điểm nằm trên đường thẳng SP.

d) Dễ thấy B Î (ABN) Ç (SBD) (1).

Ta có \(\left\{ \begin{array}{l}I \in AN,AN \subset \left( {ABN} \right)\\I \in SO,SO \subset \left( {SBD} \right)\end{array} \right. \Rightarrow I \in \left( {ABN} \right) \cap \left( {SBD} \right)\) (2).

Tương tự \(\left\{ \begin{array}{l}J \in MN,MN \subset \left( {ABN} \right)\\J \in SP,SP \subset \left( {SBD} \right)\end{array} \right. \Rightarrow J \in \left( {ABN} \right) \cap \left( {SBD} \right)\) (3).

Từ (1), (2), (3) suy ra B, I, J cùng thuộc giao tuyến của hai mặt phẳng (ABN) và (SBD) nên ba điểm này thẳng hàng.

Đáp án: a) Đúng;   b) Sai;   c) Sai;   d) Đúng.

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hinh chữ nhật. Gọi I, J lần lượt là trung điểm của các cạnh AD, BC và G là trọng tâm của tam giác SAB.a) Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đườ (ảnh 1)

a) S Î (SAB) Ç (SCD) và AB // CD (do ABCD là hình chữ nhật).

Do đó giao tuyến của hai mặt phẳng này đi qua S và song song với AB.

b) Gọi O = AC Ç BD. Khi đó (SAC) Ç (SBD) = SO.

c) Có G Î (SAB) Ç (IJG).

I, J lần lượt là trung điểm của các cạnh AD, BC nên IJ // AB // CD.

Do đó giao tuyến của hai mặt phẳng này là đường thẳng qua G và song song với CD.

d) Gọi E là trung điểm của AB.

\(\frac{{SG}}{{SE}} = \frac{{SM}}{{SB}} = \frac{2}{3} \Rightarrow MG//AB\).

Mà C Î (CGM) Ç (SBC) nên giao tuyến của hai đường thẳng này đi qua C và song song với AB.

Đáp án: a) Đúng;   b) Sai;  c) Đúng; d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP