Câu hỏi:

28/07/2025 10 Lưu

Tính đạo hàm cấp hai của hàm số \(y =  - 3\cos x\) tại điểm \({x_0} = \frac{\pi }{2}\). 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

C

\(y = - 3\cos x\)\( \Rightarrow y' = 3\sin x;\,y'' = 3\cos x\).

 Suy ra \(y''\left( {\frac{\pi }{2}} \right) = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

D

f'(x) = 4(x + 1)3; f"(x) = 12(x + 1)2.

Ta có f"(2) = 12(2 + 1)2 = 108.

Lời giải

Ta có: \(y' = \frac{{1 - x}}{{\sqrt {2x - {x^2}} }},\,\,\,y'' = \frac{{ - 1}}{{{{\left( {\sqrt {2x - {x^2}} } \right)}^3}}}\)

Do đó: \(A = {y^3}.y'' = - 1\).

Trả lời: −1.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP