Cho khối chóp cụt đều tạo bởi khối chóp đỉnh S, diện tích hai đáy lần lượt là B, B’ và chiều cao h. Chọn trục Ox chứa đường cao của khối chóp và gốc O trùng với đỉnh S. Hai mặt phẳng đáy của khối chóp cụt đều lần lượt cắt Ox tại I và I’ . Đặt OI = b, OI’ = a (a< b). Một mặt phẳng (P) vuông góc với trục Ox tại x \[\left( {a \le x \le b} \right)\], cắt khối chóp cụt đều theo hình phẳng có diện tích S(x). Người ta chứng minh rằng \[S(x) = B\frac{{{x^2}}}{{{b^2}}}\]. Tính thể tích khối chóp cụt đó.
Cho khối chóp cụt đều tạo bởi khối chóp đỉnh S, diện tích hai đáy lần lượt là B, B’ và chiều cao h. Chọn trục Ox chứa đường cao của khối chóp và gốc O trùng với đỉnh S. Hai mặt phẳng đáy của khối chóp cụt đều lần lượt cắt Ox tại I và I’ . Đặt OI = b, OI’ = a (a< b). Một mặt phẳng (P) vuông góc với trục Ox tại x \[\left( {a \le x \le b} \right)\], cắt khối chóp cụt đều theo hình phẳng có diện tích S(x). Người ta chứng minh rằng \[S(x) = B\frac{{{x^2}}}{{{b^2}}}\]. Tính thể tích khối chóp cụt đó.

Quảng cáo
Trả lời:
Thể tích khối chóp cụt đều đó là:
\(V = \int_a^b S (x)dx = \int_a^b B \frac{{{x^2}}}{{{b^2}}}dx = \left. {B\frac{{{x^3}}}{{3{b^2}}}} \right|_a^b = \frac{B}{{3{b^2}}}\left( {{b^3} - {a^3}} \right) = B \cdot \frac{{b - a}}{3} \cdot \frac{{{a^2} + ab + {b^2}}}{{{b^2}}} = \frac{{b - a}}{3} \cdot B\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{a}{b} + 1} \right).\)
\({\rm{ Vi }}{B^\prime } = B\frac{{{a^2}}}{{{b^2}}}{\rm{ hay }}\frac{{{B^\prime }}}{B} = \frac{{{a^2}}}{{{b^2}}}{\rm{ và h}} = {\rm{b - a nên }}\)\(V = \frac{h}{3} \cdot B\left( {\frac{{{B^\prime }}}{B} + \sqrt {\frac{{{B^\prime }}}{B}} + 1} \right) = \frac{h}{3}\left( {B + \sqrt {B{B^\prime }} + {B^\prime }} \right).\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thể tích khối chóp đó là: \(V = \int_0^h S (x){\rm{d}}x = \int_0^h B \frac{{{x^2}}}{{{h^2}}}\;{\rm{d}}x = \left. {B\frac{{{x^3}}}{{3{h^2}}}} \right|_0^h = B\frac{{{h^3}}}{{3{h^2}}} = \frac{{Bh}}{3}.\)
Lời giải
a) Ta có \({A^\prime }{B^\prime }{C^\prime }{D^\prime }\) đồng dạng với ABCD theo tỉ số đồng dạng là \(\frac{x}{h}\).
Do đó \(\frac{{S(x)}}{{{S_{ABCD}}}} = {\left( {\frac{x}{h}} \right)^2} \Rightarrow S(x) = {\left( {\frac{x}{h}} \right)^2} \cdot {a^2}\).
b) \(\int_0^h S (x)dx = \int_0^h {{{\left( {\frac{x}{h}} \right)}^2}} \cdot {a^2}dx = \frac{{{a^2}}}{{{h^2}}}\int_0^h {{x^2}} dx = \left. {\left( {\frac{{{a^2}}}{{{h^2}}} \cdot \frac{{{x^3}}}{3}} \right)} \right|_0^h = \frac{1}{3}{a^2}h\).
Có \({V_{O.ABCD}} = \frac{1}{3} \cdot OA \cdot {S_{ABCD}} = \frac{1}{3} \cdot h \cdot {a^2}\). Vậy \({V_{O.ABCD}} = \int_0^h S (x)dx\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.