Câu hỏi:

31/07/2025 33 Lưu

 Trên cửa sổ có dạng hình chữ nhật, một họa sĩ thiết kế logo hình con cá cho một doanh nghiệm thủy sản. Logo giới hạn bởi hai parabol với các kích thước được cho như hình bên (đơn vị trên trục tọa độ là decimet)

Trên cửa sổ có dạng hình chữ nhật, một họa sĩ thiết kế logo hình con cá cho một doanh nghiệm thủy sản. Logo giới hạn bởi hai parabol với các kích thước được cho như hình bên (đơn vị trên trục tọa độ là decimet) (ảnh 1)

a) Lập phương trình parabol y = f(x) và y = g(x).

b) Tính diện tích của logo

c) Logo chỉ cho phép 50% ánh sáng đi qua nó. Lượng ánh sáng đi qua toàn bộ cửa sổ sau khi làm logo sẽ giảm bao nhiêu phần trăm (làm tròn kết quả đến hàng phần mười)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Giả sử parabol \(y = f(x)\) cho bời \(f(x) = a{x^2} + bx + c(a \ne 0)\). Do parabol \(y = f(x)\) đi qua điểm \(D(0;2)\) nên \(c = 2\), suy ra \(f(x) = a{x^2} + bx + 2(a \ne 0)\). Vì parabol \(y = f(x)\) đi qua các điểm \(C( - 4;0),E(4;0)\) nên ta có: \(\left\{ {\begin{array}{*{20}{l}}{16a - 4b + 2 = 0}\\{16a + 4b + 2 = 0.}\end{array}} \right.\)

Hệ phương trình trên có nghiệm là \(a =  - \frac{1}{8},b = 0\). Vậy \(f(x) =  - \frac{1}{8}{x^2} + 2\).

- Giả sử parabol \(y = g(x)\) cho bởi \(g(x) = {a_1}{x^2} + {b_1}x + {c_1}\left( {{a_1} \ne 0} \right)\). Do parabol \(y = g(x)\) đi qua điểm \(G(0; - 3)\) nên \({c_1} =  - 3\), suy ra \(g(x) = {a_1}{x^2} + {b_1}x - 3\left( {{a_1} \ne 0} \right)\). Vì parabol \(y = g(x)\) đi qua các điểm \(C( - 4;0),E(4;0)\) nên ta có: \(\left\{ {\begin{array}{*{20}{l}}{16{a_1} - 4{b_1} - 3 = 0}\\{16{a_1} + 4{b_1} - 3 = 0.}\end{array}} \right.\)

Hệ phương trình trên có nghiệm là \({a_1} = \frac{3}{{16}},{b_1} = 0\). Vậy \(g(x) = \frac{3}{{16}}{x^2} - 3\).

b) Diện tích của logo là: \(S = {S_1} + {S_2}\), trong đó \({S_1}\) là diện tích hình phẳng giới hạn bởi các parabol \(f(x) =  - \frac{1}{8}{x^2} + 2,g(x) = \frac{3}{{16}}{x^2} - 3\) và hai đường thẳng \(x =  - 5,x =  - 4\); \({S_2}\) là diện tích hình phẳng giới hạn bởi các parabol \(f(x) =  - \frac{1}{8}{x^2} + 2,g(x) = \frac{3}{{16}}{x^2} - 3\) và hai đường thẳng \(x =  - 4,x = 4\).

Do đó, ta có:

\(S = \int_{ - 5}^{ - 4} | f(x) - g(x)|{\rm{d}}x + \int_{ - 4}^4 | f(x) - g(x)|{\rm{d}}x\)

\( = \int_{ - 5}^{ - 4} {\left[ {\left( {\frac{3}{{16}}{x^2} - 3} \right) - \left( { - \frac{1}{8}{x^2} + 2} \right)} \right]} {\rm{d}}x + \int_{ - 4}^4 {\left[ {\left( { - \frac{1}{8}{x^2} + 2} \right) - \left( {\frac{3}{{16}}{x^2} - 3} \right)} \right]} {\rm{d}}x\)

\( = \int_{ - 5}^4 {\left( {\frac{5}{{16}}{x^2} - 5} \right)} {\rm{d}}x + \int_{ - 4}^4 {\left( { - \frac{5}{{16}}{x^2} + 5} \right)} {\rm{d}}x\)

\( = \left. {\frac{5}{{48}}{x^3}} \right|_{ - 5}^{ - 4} - \left. {5x} \right|_{ - 5}^{ - 4} - \left. {\frac{5}{{48}}{x^3}} \right|_{ - 4}^4 + \left. {5x} \right|_{ - 4}^4\)

\( = \frac{{305}}{{48}} - 5 - \frac{{640}}{{48}} + 40 = \frac{{1345}}{{48}}.\)

\(S = \frac{{1345}}{{48}}\left( {{\rm{d}}{{\rm{m}}^2}} \right).\)

c) Gọi \(t\) là lượng ánh sáng đi qua mỗi $\mathrm{dm}^2$ của logo. Suy ra lượng ánh sáng đi qua logo là \(\frac{{1345}}{{48}}t\). Mặt khác, diện tích của cửa sổ là \((8 + 1) \cdot (2 + 3) = 45\left( {{\rm{d}}{{\rm{m}}^2}} \right)\) và lượng ánh sáng đi qua mỗi \({\rm{d}}{{\rm{m}}^2}\) của phần cửa sổ nằm ngoài logo là 2t. Suy ra, lượng ánh sáng đi qua cửa sổ trược khi làm logo là \(45.2t = 90t\) và lượng ánh sáng đi qua phẩn cửa sổ nằm ngoài logo là: \(\left( {45 - \frac{{1345}}{{48}}} \right)2t = \frac{{815}}{{24}}t\)

Do đó, tổng lượng ánh sáng đi qua cửa sổ sau khi làm logo là: \(\frac{{1345}}{{48}}t + \frac{{815}}{{24}}t = \frac{{2975}}{{48}}t.\)

Tỉ số phần trăm của lượng ánh sáng đi qua cửa sổ sau khi làm logo so vởi lượng ánh sáng đi qua cửa sổ trược khi làm logo là:  \(\left( {\frac{{2975}}{{48}}t:90t} \right) \cdot 100\%  = \frac{{297500}}{{4320}}\%  \approx 68,9\% {\rm{. }}\)

Vậy lượng ánh sáng khi đi qua toàn bộ cửa sổ sau khi làm logo sẽ giảm đi xấp xỉ là: 100% - 68,9% = 31,1%

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ông An muốn làm một cánh cửa bằng sắt có hình dạng và kích thước như hình vẽ. Biết rằng đường cong phía trên là một parabol, tứ giác  (ảnh 2)
Diện tích phần hình chữ nhật \(ABCD\) là \({S_1} = 2.4 = 8\,{m^2}\). Xét phần diện tích giới hạn bởi parabol và đoạn \(AB\)

Dựng hệ tọa độ \[Oxy\] với \(O\) là trung điểm của đoạn \(AB\), đỉnh \(I\) của parabol nằm trên tia \(Oy\), khi đó ta có \(I\left( {0;1} \right)\), \(A\left( { - 1;0} \right)\), \(B\left( {1;0} \right)\).

Parabol có trục đối xứng \(Oy\) và cắt \(Oy\) tại \(I\left( {0;1} \right)\) nên có phương trình dạng: \(y = a{x^2} + 1,\,\left( {a \ne 0} \right)\).

Parabol qua \(B\left( {1;0} \right)\) nên ta có phương trình : \(a + 1 = 0 \Leftrightarrow a =  - 1\).

Do đó phương trình của parabol là: \(y =  - {x^2} + 1\).

Diện tích phần giới hạn bởi parabol với đoạn \(AB\) là:

\({S_2} = \int\limits_{ - 1}^1 {\left( { - {x^2} + 1} \right){\rm{d}}x}  = \left. {\left( { - \frac{{{x^3}}}{3} + x} \right)} \right|_{ - 1}^1 = \frac{4}{3}\,\,\left( {{m^2}} \right)\).

Diện tích toàn bộ phần cánh cửa là \(S = {S_1} + {S_2} = 8 + \frac{4}{3} = \frac{{28}}{3}\,\,\left( {{m^2}} \right)\).

Số tiền ông An phải trả bằng \(\frac{{28}}{3}.900000 = 8400000\) (đồng).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP