Người ta dự định lắp kính cho cửa một mái vòm có dạng hình parabol. Hãy tính diện tích mặt kính cần lắp vào, biết rằng mái vòm cao 21 m và rộng 70 m
Người ta dự định lắp kính cho cửa một mái vòm có dạng hình parabol. Hãy tính diện tích mặt kính cần lắp vào, biết rằng mái vòm cao 21 m và rộng 70 m

Quảng cáo
Trả lời:

Chọn hệ tọa độ Oxy với gốc tọa độ O trùng với chân cửa bên trái như hình dưới đây.
Gọi đồ thị hàm số biểu thị cho cửa đã cho có dạng \(y = a{x^2} + bx + c(a \ne 0)\).
Đồ thị hàm số này đi qua gốc tọa độ \(O(0;0)\) và các điểm \((35;21),(70;0)\) nên
\(\left\{ {\begin{array}{*{20}{l}}{{\rm{c}} = 0}\\{{\rm{a}} \cdot {{35}^2} + {\rm{b}} \cdot 35 + {\rm{c}} = 21 \Leftrightarrow }\\{{\rm{a}} \cdot {{70}^2} + {\rm{b}} \cdot 70 + {\rm{c}} = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{\rm{a}} = - \frac{3}{{175}}}\\{\;{\rm{b}} = \frac{6}{5}}\\{{\rm{c}} = 0}\end{array}} \right.} \right.{\rm{. }}\)Suy ra \(y = - \frac{3}{{175}}{x^2} + \frac{6}{5}x\)
Diện tích mặt kính cần lắp \(V\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = - \frac{3}{{175}}{x^2} + \frac{6}{5}x\), trục O và hai đường thẳng \({\rm{x}} = 0,{\rm{x}} = 70\).
Ta có” \(V = \int_0^{70} {\left( { - \frac{3}{{175}}{x^2} + \frac{6}{5}x} \right)} dx = \left. {\left( { - \frac{{{x^3}}}{{175}} + \frac{{3{x^2}}}{5}} \right)} \right|_0^{70} = - \frac{{{{70}^3}}}{{175}} + \frac{{3 \cdot {{70}^2}}}{5} = 980\left( {\;{{\rm{m}}^2}} \right)\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Giả sử parabol \(y = f(x)\) cho bời \(f(x) = a{x^2} + bx + c(a \ne 0)\). Do parabol \(y = f(x)\) đi qua điểm \(D(0;2)\) nên \(c = 2\), suy ra \(f(x) = a{x^2} + bx + 2(a \ne 0)\). Vì parabol \(y = f(x)\) đi qua các điểm \(C( - 4;0),E(4;0)\) nên ta có: \(\left\{ {\begin{array}{*{20}{l}}{16a - 4b + 2 = 0}\\{16a + 4b + 2 = 0.}\end{array}} \right.\)
Hệ phương trình trên có nghiệm là \(a = - \frac{1}{8},b = 0\). Vậy \(f(x) = - \frac{1}{8}{x^2} + 2\).
- Giả sử parabol \(y = g(x)\) cho bởi \(g(x) = {a_1}{x^2} + {b_1}x + {c_1}\left( {{a_1} \ne 0} \right)\). Do parabol \(y = g(x)\) đi qua điểm \(G(0; - 3)\) nên \({c_1} = - 3\), suy ra \(g(x) = {a_1}{x^2} + {b_1}x - 3\left( {{a_1} \ne 0} \right)\). Vì parabol \(y = g(x)\) đi qua các điểm \(C( - 4;0),E(4;0)\) nên ta có: \(\left\{ {\begin{array}{*{20}{l}}{16{a_1} - 4{b_1} - 3 = 0}\\{16{a_1} + 4{b_1} - 3 = 0.}\end{array}} \right.\)
Hệ phương trình trên có nghiệm là \({a_1} = \frac{3}{{16}},{b_1} = 0\). Vậy \(g(x) = \frac{3}{{16}}{x^2} - 3\).
b) Diện tích của logo là: \(S = {S_1} + {S_2}\), trong đó \({S_1}\) là diện tích hình phẳng giới hạn bởi các parabol \(f(x) = - \frac{1}{8}{x^2} + 2,g(x) = \frac{3}{{16}}{x^2} - 3\) và hai đường thẳng \(x = - 5,x = - 4\); \({S_2}\) là diện tích hình phẳng giới hạn bởi các parabol \(f(x) = - \frac{1}{8}{x^2} + 2,g(x) = \frac{3}{{16}}{x^2} - 3\) và hai đường thẳng \(x = - 4,x = 4\).
Do đó, ta có:
\(S = \int_{ - 5}^{ - 4} | f(x) - g(x)|{\rm{d}}x + \int_{ - 4}^4 | f(x) - g(x)|{\rm{d}}x\)
\( = \int_{ - 5}^{ - 4} {\left[ {\left( {\frac{3}{{16}}{x^2} - 3} \right) - \left( { - \frac{1}{8}{x^2} + 2} \right)} \right]} {\rm{d}}x + \int_{ - 4}^4 {\left[ {\left( { - \frac{1}{8}{x^2} + 2} \right) - \left( {\frac{3}{{16}}{x^2} - 3} \right)} \right]} {\rm{d}}x\)
\( = \int_{ - 5}^4 {\left( {\frac{5}{{16}}{x^2} - 5} \right)} {\rm{d}}x + \int_{ - 4}^4 {\left( { - \frac{5}{{16}}{x^2} + 5} \right)} {\rm{d}}x\)
\( = \left. {\frac{5}{{48}}{x^3}} \right|_{ - 5}^{ - 4} - \left. {5x} \right|_{ - 5}^{ - 4} - \left. {\frac{5}{{48}}{x^3}} \right|_{ - 4}^4 + \left. {5x} \right|_{ - 4}^4\)
\( = \frac{{305}}{{48}} - 5 - \frac{{640}}{{48}} + 40 = \frac{{1345}}{{48}}.\)
\(S = \frac{{1345}}{{48}}\left( {{\rm{d}}{{\rm{m}}^2}} \right).\)
c) Gọi \(t\) là lượng ánh sáng đi qua mỗi $\mathrm{dm}^2$ của logo. Suy ra lượng ánh sáng đi qua logo là \(\frac{{1345}}{{48}}t\). Mặt khác, diện tích của cửa sổ là \((8 + 1) \cdot (2 + 3) = 45\left( {{\rm{d}}{{\rm{m}}^2}} \right)\) và lượng ánh sáng đi qua mỗi \({\rm{d}}{{\rm{m}}^2}\) của phần cửa sổ nằm ngoài logo là 2t. Suy ra, lượng ánh sáng đi qua cửa sổ trược khi làm logo là \(45.2t = 90t\) và lượng ánh sáng đi qua phẩn cửa sổ nằm ngoài logo là: \(\left( {45 - \frac{{1345}}{{48}}} \right)2t = \frac{{815}}{{24}}t\)
Do đó, tổng lượng ánh sáng đi qua cửa sổ sau khi làm logo là: \(\frac{{1345}}{{48}}t + \frac{{815}}{{24}}t = \frac{{2975}}{{48}}t.\)
Tỉ số phần trăm của lượng ánh sáng đi qua cửa sổ sau khi làm logo so vởi lượng ánh sáng đi qua cửa sổ trược khi làm logo là: \(\left( {\frac{{2975}}{{48}}t:90t} \right) \cdot 100\% = \frac{{297500}}{{4320}}\% \approx 68,9\% {\rm{. }}\)
Vậy lượng ánh sáng khi đi qua toàn bộ cửa sổ sau khi làm logo sẽ giảm đi xấp xỉ là: 100% - 68,9% = 31,1%
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.