Câu hỏi:

29/07/2025 28 Lưu

   Ông An muốn làm một cánh cửa bằng sắt có hình dạng và kích thước như hình vẽ. Biết rằng đường cong phía trên là một parabol, tứ giác \(ABCD\) là hình chữ nhật. Giá của cánh cửa sau khi hoàn thành là \[900.000\] đồng/m2. Số tiền mà ông An phải trả để làm cánh cửa đó bằng

Ông An muốn làm một cánh cửa bằng sắt có hình dạng và kích thước như hình vẽ. Biết rằng đường cong phía trên là một parabol, tứ giác  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Ông An muốn làm một cánh cửa bằng sắt có hình dạng và kích thước như hình vẽ. Biết rằng đường cong phía trên là một parabol, tứ giác  (ảnh 2)
Diện tích phần hình chữ nhật \(ABCD\) là \({S_1} = 2.4 = 8\,{m^2}\). Xét phần diện tích giới hạn bởi parabol và đoạn \(AB\)

Dựng hệ tọa độ \[Oxy\] với \(O\) là trung điểm của đoạn \(AB\), đỉnh \(I\) của parabol nằm trên tia \(Oy\), khi đó ta có \(I\left( {0;1} \right)\), \(A\left( { - 1;0} \right)\), \(B\left( {1;0} \right)\).

Parabol có trục đối xứng \(Oy\) và cắt \(Oy\) tại \(I\left( {0;1} \right)\) nên có phương trình dạng: \(y = a{x^2} + 1,\,\left( {a \ne 0} \right)\).

Parabol qua \(B\left( {1;0} \right)\) nên ta có phương trình : \(a + 1 = 0 \Leftrightarrow a =  - 1\).

Do đó phương trình của parabol là: \(y =  - {x^2} + 1\).

Diện tích phần giới hạn bởi parabol với đoạn \(AB\) là:

\({S_2} = \int\limits_{ - 1}^1 {\left( { - {x^2} + 1} \right){\rm{d}}x}  = \left. {\left( { - \frac{{{x^3}}}{3} + x} \right)} \right|_{ - 1}^1 = \frac{4}{3}\,\,\left( {{m^2}} \right)\).

Diện tích toàn bộ phần cánh cửa là \(S = {S_1} + {S_2} = 8 + \frac{4}{3} = \frac{{28}}{3}\,\,\left( {{m^2}} \right)\).

Số tiền ông An phải trả bằng \(\frac{{28}}{3}.900000 = 8400000\) (đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Giả sử parabol \(y = f(x)\) cho bời \(f(x) = a{x^2} + bx + c(a \ne 0)\). Do parabol \(y = f(x)\) đi qua điểm \(D(0;2)\) nên \(c = 2\), suy ra \(f(x) = a{x^2} + bx + 2(a \ne 0)\). Vì parabol \(y = f(x)\) đi qua các điểm \(C( - 4;0),E(4;0)\) nên ta có: \(\left\{ {\begin{array}{*{20}{l}}{16a - 4b + 2 = 0}\\{16a + 4b + 2 = 0.}\end{array}} \right.\)

Hệ phương trình trên có nghiệm là \(a =  - \frac{1}{8},b = 0\). Vậy \(f(x) =  - \frac{1}{8}{x^2} + 2\).

- Giả sử parabol \(y = g(x)\) cho bởi \(g(x) = {a_1}{x^2} + {b_1}x + {c_1}\left( {{a_1} \ne 0} \right)\). Do parabol \(y = g(x)\) đi qua điểm \(G(0; - 3)\) nên \({c_1} =  - 3\), suy ra \(g(x) = {a_1}{x^2} + {b_1}x - 3\left( {{a_1} \ne 0} \right)\). Vì parabol \(y = g(x)\) đi qua các điểm \(C( - 4;0),E(4;0)\) nên ta có: \(\left\{ {\begin{array}{*{20}{l}}{16{a_1} - 4{b_1} - 3 = 0}\\{16{a_1} + 4{b_1} - 3 = 0.}\end{array}} \right.\)

Hệ phương trình trên có nghiệm là \({a_1} = \frac{3}{{16}},{b_1} = 0\). Vậy \(g(x) = \frac{3}{{16}}{x^2} - 3\).

b) Diện tích của logo là: \(S = {S_1} + {S_2}\), trong đó \({S_1}\) là diện tích hình phẳng giới hạn bởi các parabol \(f(x) =  - \frac{1}{8}{x^2} + 2,g(x) = \frac{3}{{16}}{x^2} - 3\) và hai đường thẳng \(x =  - 5,x =  - 4\); \({S_2}\) là diện tích hình phẳng giới hạn bởi các parabol \(f(x) =  - \frac{1}{8}{x^2} + 2,g(x) = \frac{3}{{16}}{x^2} - 3\) và hai đường thẳng \(x =  - 4,x = 4\).

Do đó, ta có:

\(S = \int_{ - 5}^{ - 4} | f(x) - g(x)|{\rm{d}}x + \int_{ - 4}^4 | f(x) - g(x)|{\rm{d}}x\)

\( = \int_{ - 5}^{ - 4} {\left[ {\left( {\frac{3}{{16}}{x^2} - 3} \right) - \left( { - \frac{1}{8}{x^2} + 2} \right)} \right]} {\rm{d}}x + \int_{ - 4}^4 {\left[ {\left( { - \frac{1}{8}{x^2} + 2} \right) - \left( {\frac{3}{{16}}{x^2} - 3} \right)} \right]} {\rm{d}}x\)

\( = \int_{ - 5}^4 {\left( {\frac{5}{{16}}{x^2} - 5} \right)} {\rm{d}}x + \int_{ - 4}^4 {\left( { - \frac{5}{{16}}{x^2} + 5} \right)} {\rm{d}}x\)

\( = \left. {\frac{5}{{48}}{x^3}} \right|_{ - 5}^{ - 4} - \left. {5x} \right|_{ - 5}^{ - 4} - \left. {\frac{5}{{48}}{x^3}} \right|_{ - 4}^4 + \left. {5x} \right|_{ - 4}^4\)

\( = \frac{{305}}{{48}} - 5 - \frac{{640}}{{48}} + 40 = \frac{{1345}}{{48}}.\)

\(S = \frac{{1345}}{{48}}\left( {{\rm{d}}{{\rm{m}}^2}} \right).\)

c) Gọi \(t\) là lượng ánh sáng đi qua mỗi $\mathrm{dm}^2$ của logo. Suy ra lượng ánh sáng đi qua logo là \(\frac{{1345}}{{48}}t\). Mặt khác, diện tích của cửa sổ là \((8 + 1) \cdot (2 + 3) = 45\left( {{\rm{d}}{{\rm{m}}^2}} \right)\) và lượng ánh sáng đi qua mỗi \({\rm{d}}{{\rm{m}}^2}\) của phần cửa sổ nằm ngoài logo là 2t. Suy ra, lượng ánh sáng đi qua cửa sổ trược khi làm logo là \(45.2t = 90t\) và lượng ánh sáng đi qua phẩn cửa sổ nằm ngoài logo là: \(\left( {45 - \frac{{1345}}{{48}}} \right)2t = \frac{{815}}{{24}}t\)

Do đó, tổng lượng ánh sáng đi qua cửa sổ sau khi làm logo là: \(\frac{{1345}}{{48}}t + \frac{{815}}{{24}}t = \frac{{2975}}{{48}}t.\)

Tỉ số phần trăm của lượng ánh sáng đi qua cửa sổ sau khi làm logo so vởi lượng ánh sáng đi qua cửa sổ trược khi làm logo là:  \(\left( {\frac{{2975}}{{48}}t:90t} \right) \cdot 100\%  = \frac{{297500}}{{4320}}\%  \approx 68,9\% {\rm{. }}\)

Vậy lượng ánh sáng khi đi qua toàn bộ cửa sổ sau khi làm logo sẽ giảm đi xấp xỉ là: 100% - 68,9% = 31,1%

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP