Gọi \(S\) là diện tích hình phẳng giới hạn bởi các đường \(y = {x^2} + 5\),\(y = 6x\), \(x = 0\),\(x = 1\). Tính \(S\).
Quảng cáo
Trả lời:
Chọn B
Phương trình hoành độ giao điểm: \({x^2} + 5 = 6x \Leftrightarrow x = 5;x = 1\).
Diện tích hình phẳng cần tìm: \(S = \int\limits_0^1 {\left| {{x^2} - 6x + 5} \right|{\rm{d}}x} = \frac{7}{3}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
Diện tích của hình phẳng được giới hạn bởi đồ thị hàm số \[y = f\left( x \right)\], trục hoành và hai đường thẳng \[x = a\], \[x = b\] là \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|{\rm{d}}x} = \) \(\int\limits_a^c {\left| {f\left( x \right)} \right|{\rm{d}}x} + \int\limits_c^b {\left| {f\left( x \right)} \right|{\rm{d}}x} \) \( = - \int\limits_a^c {f(x){\rm{d}}x} + \int\limits_c^b {f(x){\rm{d}}x} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.