Câu hỏi:

29/07/2025 53 Lưu

Cắt một vật thể bởi hai mặt phẳng vuông góc với trục \[Ox\] tại \(x = 1\) và \(x = 3\). Một mặt phẳng tùy ý vuông góc với trục \[Ox\] tại điểm có hoành độ \(x\) (\(1 \le x \le 3\)) cắt vật thể đó theo thiết diện là một hình chữ nhật có độ dài hai cạnh là \(3x\) và \(3{x^2} - 2\). Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng trên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Diện tích thiết diện là: \(S(x) = 3x.\left( {3{x^2} - 2} \right) = 9{x^3} - 6x\)

\( \Rightarrow \) Thể tích vật thể là: \(V = \int\limits_1^3 {\left( {9{x^3} - 6x} \right)dx = 156} \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn D

Diện tích hình phẳng được tô đậm trong hình vẽ bên là:

\[\int\limits_{ - 1}^1 {\left| {{x^2} - 2 - \left( { - \sqrt {\left| x \right|} } \right)} \right|{\rm{d}}x} = \int\limits_{ - 1}^1 {\left( { - \sqrt {\left| x \right|} - {x^2} + 2} \right){\rm{d}}x} \] ( vì \(x \in \left[ { - 1;1} \right] \Rightarrow - \sqrt {\left| x \right|} > {x^2} - 2\)).

Câu 2

Lời giải

Chọn C

Diện tích của hình phẳng được giới hạn bởi đồ thị hàm số \[y = f\left( x \right)\], trục hoành và hai đường thẳng \[x = a\], \[x = b\]\(S = \int\limits_a^b {\left| {f\left( x \right)} \right|{\rm{d}}x} = \) \(\int\limits_a^c {\left| {f\left( x \right)} \right|{\rm{d}}x} + \int\limits_c^b {\left| {f\left( x \right)} \right|{\rm{d}}x} \) \( = - \int\limits_a^c {f(x){\rm{d}}x} + \int\limits_c^b {f(x){\rm{d}}x} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP