Câu hỏi:

29/07/2025 40 Lưu

Diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = 4x - {x^2}\), \(y = 2x\) và hai đường thẳng \[x = 1,x = e\] bằng

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

diện tích hình phẳng cần tìm là \[S = \int\limits_0^2 {\left| {{x^2} - 2x} \right|{\rm{d}}x} = \int\limits_0^2 {\left( {2x - {x^2}} \right){\rm{d}}x} = \left. {\left( {{x^2} - \frac{{{x^3}}}{3}} \right)} \right|_0^2 = \frac{4}{3}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn D

Diện tích hình phẳng được tô đậm trong hình vẽ bên là:

\[\int\limits_{ - 1}^1 {\left| {{x^2} - 2 - \left( { - \sqrt {\left| x \right|} } \right)} \right|{\rm{d}}x} = \int\limits_{ - 1}^1 {\left( { - \sqrt {\left| x \right|} - {x^2} + 2} \right){\rm{d}}x} \] ( vì \(x \in \left[ { - 1;1} \right] \Rightarrow - \sqrt {\left| x \right|} > {x^2} - 2\)).

Câu 2

Lời giải

Chọn C

Diện tích của hình phẳng được giới hạn bởi đồ thị hàm số \[y = f\left( x \right)\], trục hoành và hai đường thẳng \[x = a\], \[x = b\]\(S = \int\limits_a^b {\left| {f\left( x \right)} \right|{\rm{d}}x} = \) \(\int\limits_a^c {\left| {f\left( x \right)} \right|{\rm{d}}x} + \int\limits_c^b {\left| {f\left( x \right)} \right|{\rm{d}}x} \) \( = - \int\limits_a^c {f(x){\rm{d}}x} + \int\limits_c^b {f(x){\rm{d}}x} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP