Một chú thỏ ngày nào cũng ra bờ suối ở vị trí \(A\), cách cửa hang của mình tại vị trí \(B\) là \(370{\rm{\;m}}\) để uống nước, sau đó chú thỏ sẽ đến vị trí \(C\) cách vị trí \(A\) một khoảng \(120\;{\rm{m}}\) để ăn cỏ rồi trở về hang. Tuy nhiên, hôm nay sau khi uống nước ở bờ suối, chú thỏ không đến vị trí \(C\) như mọi ngày mà chạy đến vị trí \(D\) để tìm cà rốt rồi mới trở về hang (xem hình bên dưới). Biết rằng, tổng thời gian chú thỏ chạy từ vị trí \(A\) đến vị trí \(D\) rồi về hang là 30 giây (không kể thời gian tìm cà rốt), trên đoạn \(AD\) chú thỏ chạy với vận tốc là \(13\;\,{\rm{m/s}}\), trên đoạn \(BD\) chú thỏ chạy với vận tốc là \(15\;\,{\rm{m/s}}\). Tính khoảng cách giữa hai vị trí \(C\) và \(D\) (đơn vị: mét).
Quảng cáo
Trả lời:
Lời giải
Gọi thời gian chú thỏ chạy trên đoạn \(AD\) là \(x\,\,\left( {0 < x < 30} \right)\) (giây), khi đó thời gian chú thỏ chạy trên đoạn \(BD\) là \(30 - x\) (giây). Do đó, quãng đường \(AD\) và \(BD\) lần lượt là \(13x\,\,{\rm{(m)}}\) và \(15\left( {30 - x} \right)\,\,{\rm{(m)}}\).
Độ dài quãng đường \(BC\) là: \(\sqrt {{{370}^2} - {{120}^2}} = 350\,\,{\rm{(m)}}\).
Tam giác \(ACD\) vuông tại \(C\) nên \(CD = \sqrt {{{\left( {13x} \right)}^2} - {{120}^2}} \,\,{\rm{(m)}}\).
Mặt khác, \(CD = BC - BD = 350 - 15\left( {30 - x} \right)\,\,{\rm{(m)}}\).
Do đó, ta có: \(\sqrt {{{\left( {13x} \right)}^2} - {{120}^2}} = 350 - 15\left( {30 - x} \right)\).
Giải phương trình này và kết hợp với điều kiện \(0 < x < 30\), ta nhận \(x = 10\) (giây).
Vậy khoảng cách giữa vị trí \(C\) và vị trí \(D\) là: \(350 - 15 \cdot \left( {30 - 10} \right) = 50\,\,{\rm{(m)}}\).
Đáp án: \(50\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Ta có \(\sqrt {2{x^2} + 4x - 1} = x + 1 \Leftrightarrow \left\{ \begin{array}{l}x + 1 \ge 0\\2{x^2} + 4x - 1 = {\left( {x + 1} \right)^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ge - 1\\{x^2} + 2x - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge - 1\\x = - 1 \pm \sqrt 3 \end{array} \right. \Rightarrow x = - 1 + \sqrt 3 \).
Lời giải
Lời giải
Đặt \(AB = x\) (km) thì \(BC = 5 - x\) (km) \(\left( {0 < x < 5} \right)\).
Khi đó \(BD = \sqrt {B{C^2} + C{D^2}} = \sqrt {{{\left( {5 - x} \right)}^2} + 4} \) (km).
Chi phí mắc dây điện từ \(A\) đến \(B\) là \(3000x\) (USD).
Chi phí mắc dây điện từ \(B\) đến \(D\) là \(5000\sqrt {{{\left( {5 - x} \right)}^2} + 4} \) (USD).
Tổng chi phí mắc dây điện từ \(A\) đến \(D\) là \(3000x + 5000\sqrt {{{\left( {5 - x} \right)}^2} + 4} \) (USD).
Theo giả thiết, ta có \(3000x + 5000\sqrt {{{\left( {5 - x} \right)}^2} + 4} = 23000\)\( \Leftrightarrow 3x + 5\sqrt {{{\left( {5 - x} \right)}^2} + 4} = 23\)
\( \Leftrightarrow 5\sqrt {{x^2} - 10x + 29} = 23 - 3x\) \(\left( 1 \right)\).
Bình phương hai vế của \(\left( 1 \right)\) ta được \(25\left( {{x^2} - 10x + 29} \right) = {\left( {23 - 3x} \right)^2}\)
\( \Leftrightarrow 16{x^2} - 112x + 196 = 0\)\( \Leftrightarrow x = \frac{7}{2}\). Thử lại ta thấy \(x = \frac{7}{2}\) thỏa mãn phương trình \(\left( 1 \right)\).
Vậy điểm \(B\) phải cách điểm \(A\) một khoảng cách bằng \(3,5\) (km).
Đáp án: 3,5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.