Câu hỏi:

30/07/2025 5 Lưu

Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai.

Đán án: ……………………

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi A là biến cố: “Lấy được một viên bi xanh ở lần thứ nhất”

Gọi B là biến cố: “Lấy được một viên bi trắng ở lần thứ hai”.

Ta cần tính xác suất \[P\left( {A \cap B} \right)\]

Theo công thức nhân xác suất \[P\left( {A \cap B} \right) = P\left( A \right).P\left( {B|A} \right)\]

Vì có 30 viên bi xanh trong tổng số 50 viên bi nên\[P\left( A \right) = \frac{{30}}{{50}} = \frac{3}{5}\]

Nếu  A đã xảy ra, tức là một viên bi xanh đã được lấy ra ở lần thứ nhất, thì còn lại trong bình 49 viên bi trong đó số viên bi trắng là 20, do đó\[P\left( {B|A} \right) = \frac{{20}}{{49}}\]

Vậy xác suất cần tìm là \[P\left( {A \cap B} \right) = P\left( A \right).P\left( {B|A} \right) = \frac{3}{5}.\frac{{20}}{{49}} = \frac{{12}}{{29}} \approx 0,41\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A là biến cố: “rút ra được câu hỏi lý thuyết”

Gọi B là biến cố: “rút ra được câu khó”

Nếu biết B đã xảy ra (nghĩa là câu hỏi rút ra là một câu trong số 17 câu khó) thì xác suất để câu hỏi đó là lý thuyết (nghĩa là câu hỏi đó là một câu trong số 5 câu hỏi lý thuyết khó ) chính là xác suất A có điều kiện B đã xảy ra.  Ta đi tính \[P\left( {A|B} \right)\]

Ta có:

\[P\left( A \right) = \frac{{13}}{{40}}\]

\[P\left( B \right) = \frac{{17}}{{40}}\]

\[P\left( {A \cap B} \right) = \frac{5}{{40}}\]

Vậy \[P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{5}{{40}}}}{{\frac{{17}}{{40}}}} = \frac{5}{{17}}\]

Lời giải

Gọi A là biến cố: “rút ra được câu hỏi lý thuyết”

Gọi B là biến cố: “rút ra được câu khó”

Nếu biết B đã xảy ra (nghĩa là câu hỏi rút ra là một câu trong số 17 câu khó) thì xác suất để câu hỏi đó là lý thuyết (nghĩa là câu hỏi đó là một câu trong số 5 câu hỏi lý thuyết khó ) chính là xác suất A có điều kiện B đã xảy ra.  Ta đi tính \[P\left( {A|B} \right)\].

Ta có:

\[P\left( A \right) = \frac{{13}}{{40}}\]

\[P\left( B \right) = \frac{{17}}{{40}}\]

\[P\left( {A \cap B} \right) = \frac{5}{{40}}\]

Vậy \[P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{5}{{40}}}}{{\frac{{17}}{{40}}}} = \frac{5}{{17}} \approx 0,29\].