Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai.
Đán án: ……………………
Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai.
Đán án: ……………………Quảng cáo
Trả lời:
Gọi A là biến cố: “Lấy được một viên bi xanh ở lần thứ nhất”
Gọi B là biến cố: “Lấy được một viên bi trắng ở lần thứ hai”.
Ta cần tính xác suất \[P\left( {A \cap B} \right)\]
Theo công thức nhân xác suất \[P\left( {A \cap B} \right) = P\left( A \right).P\left( {B|A} \right)\]
Vì có 30 viên bi xanh trong tổng số 50 viên bi nên\[P\left( A \right) = \frac{{30}}{{50}} = \frac{3}{5}\]
Nếu A đã xảy ra, tức là một viên bi xanh đã được lấy ra ở lần thứ nhất, thì còn lại trong bình 49 viên bi trong đó số viên bi trắng là 20, do đó\[P\left( {B|A} \right) = \frac{{20}}{{49}}\]
Vậy xác suất cần tìm là \[P\left( {A \cap B} \right) = P\left( A \right).P\left( {B|A} \right) = \frac{3}{5}.\frac{{20}}{{49}} = \frac{{12}}{{29}} \approx 0,41\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A là biến cố: “rút ra được câu hỏi lý thuyết”
Gọi B là biến cố: “rút ra được câu khó”
Nếu biết B đã xảy ra (nghĩa là câu hỏi rút ra là một câu trong số 17 câu khó) thì xác suất để câu hỏi đó là lý thuyết (nghĩa là câu hỏi đó là một câu trong số 5 câu hỏi lý thuyết khó ) chính là xác suất A có điều kiện B đã xảy ra. Ta đi tính \[P\left( {A|B} \right)\]
Ta có:
\[P\left( A \right) = \frac{{13}}{{40}}\]
\[P\left( B \right) = \frac{{17}}{{40}}\]
\[P\left( {A \cap B} \right) = \frac{5}{{40}}\]
Vậy \[P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{5}{{40}}}}{{\frac{{17}}{{40}}}} = \frac{5}{{17}}\]
Lời giải
Xét hai biến cố sau:
A: "Học sinh được chọn ra đạt điểm giỏi";
\(B\) : "Học sinh được chọn ra là học sinh nữ".
Khi đó, xác suất để học sinh được chọn ra đạt điểm giỏi, biết rằng học sinh đó là nữ, chính là xác suất của \(A\) với điều kiện \(B\).
Do có 26 học sinh nữ đạt điểm giỏi nên
\({\rm{P}}(A \cap B) = \frac{{26}}{{200}} = 0,13.{\rm{ }}\)
Do có 105 học sinh nữ nên \({\rm{P}}(B) = \frac{{105}}{{200}} = 0,525\). Vì thế, ta có:
\({\rm{P}}(A\mid B) = \frac{{{\rm{P}}(A \cap B)}}{{{\rm{P}}(B)}} = \frac{{0,13}}{{0,525}} \approx 0,25.\)
Vậy xác suất để học sinh được chọn ra đạt điểm giỏi, biết rằng học sinh đó là nữ, là 0,25 .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.