Một hộp chứa ba tấm thẻ cùng loại được ghi số lần lượt từ 1 đến 3 . Bạn Hà lấy ra một cách ngẫu nhiên một thė từ hộp, bỏ thè đó ra ngoài và lại lấy ra một cách ngẫu nhiên thêm một thẻ nữa. Xét các biến cố:
\(A\): "Thẻ lấy ra lần thứ nhất ghi số 1 ";
\(B\) : "Thẻ lấy ra lần thứ nhất ghi số 2 ";
\(C\) : "Thẻ lấy ra lần thứ hai ghi số lè".
Tính xác suất để thẻ lấy ra lần thứ hai ghi số lè, biết rằng thẻ lấy ra lần thứ nhất ghi số 1 .
Một hộp chứa ba tấm thẻ cùng loại được ghi số lần lượt từ 1 đến 3 . Bạn Hà lấy ra một cách ngẫu nhiên một thė từ hộp, bỏ thè đó ra ngoài và lại lấy ra một cách ngẫu nhiên thêm một thẻ nữa. Xét các biến cố:
\(A\): "Thẻ lấy ra lần thứ nhất ghi số 1 ";
\(B\) : "Thẻ lấy ra lần thứ nhất ghi số 2 ";
\(C\) : "Thẻ lấy ra lần thứ hai ghi số lè".
Tính xác suất để thẻ lấy ra lần thứ hai ghi số lè, biết rằng thẻ lấy ra lần thứ nhất ghi số 1 .
Quảng cáo
Trả lời:

Xác suất cần tìm là \(P(C\mid A)\). Khi biến cố \(A\) xày ra thì kết quả của phép thử là \((1;2)\) hoặc \((1;3)\). Trong hai kết quả đồng khả năng này chỉ có kết quả \((1;3)\) là thuận lợi cho biến cố \(C\).
Vậy xác suất để thẻ lấy ra lần thứ hai ghi số lè, biết rằng thẻ lấy ra lần thứ nhất ghi số 1 là \(P(C\mid A) = \frac{1}{2}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Nếu Sơn lấy được bút bi đen thì trong 11 chiếc bút còn lại có 7 bút bi xanh và 4 bút bi đen. Vậy xác suất để Tùng lấy được bút bi xanh khi biết Sơn lấy được bút bi đen là \(\frac{7}{{11}}\).
Lời giải
Tính \(P(D\mid A)\).
Ta thấy khi biến cố \(A\) xảy ra thì kết quả của phép thử là \((1;2)\) hoặc \((1;3)\). Đây đều là các kết quả thuận lợi cho biến cố \(D\). Do đó \(P(D\mid A) = 1\).
Tính \(P(D\mid B)\)
Ta thấy khi biến cố \(B\) xảy ra thì kết quả của phép thử là \((2;1)\) hoặc \((2;3)\). Trong hai kết quả này thì có một kết quả thuận lợi cho biến cố \(D\). Do đó \(P(D\mid B) = \frac{1}{2}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.