Câu hỏi:

19/08/2025 130 Lưu

Câu lạc bộ cờ của nhà trường gồm 35 thành viên, mỗi thành viên biết chơi ít nhất một trong hai môn cờ vua hoặc cờ tướng. Biết rằng có 25 thành viên biết chơi cờ vua và 20 thành viên biết chơi cờ tướng. Chọn ngẫu nhiên 1 thành viên của câu lạc bộ. Tính xác suất thành viên được chọn biết chơi cờ vua, biết rằng thành viên đó biết chơi cờ tướng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

 Gọi \(A\) là biến cố "Thành viên được chọn biết chơi cờ tướng" và \(B\) là biến cố "Thành viên được chọn biết chơi cờ vua".

Số thành viên của câu lạc bộ biết chơi cả hai môn cờ là \(20 + 25 - 35 = 10\).

Do đó, trong số 20 thành viên biết chơi cờ tướng, có đúng 10 thành viên biết chơi cờ vua.

Vậy nên xác suất thành viên được chọn biết chơi cờ vua, biết rằng thành viên đó biết chơi cờ tướng là \(P(B\mid A) = \frac{{10}}{{20}} = 0,5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tính \(P(D\mid A)\).

Ta thấy khi biến cố \(A\) xảy ra thì kết quả của phép thử là \((1;2)\) hoặc \((1;3)\). Đây đều là các kết quả thuận lợi cho biến cố \(D\). Do đó \(P(D\mid A) = 1\).

Tính \(P(D\mid B)\)

Ta thấy khi biến cố \(B\) xảy ra thì kết quả của phép thử là \((2;1)\) hoặc \((2;3)\). Trong hai kết quả này thì có một kết quả thuận lợi cho biến cố \(D\). Do đó \(P(D\mid B) = \frac{1}{2}\)