Câu hỏi:

14/08/2025 481 Lưu

Một công ty bảo hiểm nhận thấy có \(48\% \) số người mua bảo hiểm ô tô là phụ nữ và có \(36\% \) số người mua bảo hiểm ô tô là phụ nữ trên 45 tuổi. Biết một người mua bảo hiểm ô tô là phụ nữ, tính xác suất người đó trên 45 tuổi.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố "Người mua bảo hiểm ô tô là phụ nữ", \(B\) là biến cố "Người mua bảo hiểm ô tô trên 45 tuổi". Ta cần tính \(P(B\mid A)\).

Do có \(48\% \) người mua bảo hiểm ô tô là phụ nữ nên \(P(A) = 0,48\).

Do có \(36\% \) số người mua bảo hiểm ô tô là phụ nữ trên 45 tuổi nên \(P(AB) = 0,36\).

Vậy \(P(B\mid A) = \frac{{P(AB)}}{{P(A)}} = \frac{{0,36}}{{0,48}} = 0,75\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hai biến cố \(A\) và \(B\) có \(P(A) = 0,3;P(B) = 0,5\) và \(P(A\mid B) = 0\),4. Tính \(P(\bar AB)\) và \(P(\bar A\mid B)\). (ảnh 1)

Theo công thức nhân xác suất, ta có \(P(AB) = P(B)P(A\mid B) = 0,2\).

Vì \(\bar AB\) và \(AB\) là hai biến cố xung khắc và \(\bar AB \cup AB = B\) nên theo tính chất của xác suất, ta có \(P(\bar AB) = P(B) - P(AB) = 0,3\).

Theo công thức tính xác suất có điều kiện, \(P(\bar A\mid B) = \frac{{P(\bar AB)}}{{P(B)}} = \frac{{0,3}}{{0,5}} = 0,6.\)

Lời giải

 Gọi \(A\) là biến cố "Thành viên được chọn biết chơi cờ tướng" và \(B\) là biến cố "Thành viên được chọn biết chơi cờ vua".

Số thành viên của câu lạc bộ biết chơi cả hai môn cờ là \(20 + 25 - 35 = 10\).

Do đó, trong số 20 thành viên biết chơi cờ tướng, có đúng 10 thành viên biết chơi cờ vua.

Vậy nên xác suất thành viên được chọn biết chơi cờ vua, biết rằng thành viên đó biết chơi cờ tướng là \(P(B\mid A) = \frac{{10}}{{20}} = 0,5\).