Câu hỏi:

14/08/2025 446 Lưu

Cho hai biến cố \(A\) và \(B\) có \(P(A) = 0,3;P(B) = 0,5\) và \(P(A\mid B) = 0\),4. Tính \(P(\bar AB)\) và \(P(\bar A\mid B)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hai biến cố \(A\) và \(B\) có \(P(A) = 0,3;P(B) = 0,5\) và \(P(A\mid B) = 0\),4. Tính \(P(\bar AB)\) và \(P(\bar A\mid B)\). (ảnh 1)

Theo công thức nhân xác suất, ta có \(P(AB) = P(B)P(A\mid B) = 0,2\).

Vì \(\bar AB\) và \(AB\) là hai biến cố xung khắc và \(\bar AB \cup AB = B\) nên theo tính chất của xác suất, ta có \(P(\bar AB) = P(B) - P(AB) = 0,3\).

Theo công thức tính xác suất có điều kiện, \(P(\bar A\mid B) = \frac{{P(\bar AB)}}{{P(B)}} = \frac{{0,3}}{{0,5}} = 0,6.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 Gọi \(A\) là biến cố "Thành viên được chọn biết chơi cờ tướng" và \(B\) là biến cố "Thành viên được chọn biết chơi cờ vua".

Số thành viên của câu lạc bộ biết chơi cả hai môn cờ là \(20 + 25 - 35 = 10\).

Do đó, trong số 20 thành viên biết chơi cờ tướng, có đúng 10 thành viên biết chơi cờ vua.

Vậy nên xác suất thành viên được chọn biết chơi cờ vua, biết rằng thành viên đó biết chơi cờ tướng là \(P(B\mid A) = \frac{{10}}{{20}} = 0,5\).

Lời giải

Xác suất cần tìm là \(P(C\mid A)\). Khi biến cố \(A\) xày ra thì kết quả của phép thử là \((1;2)\) hoặc \((1;3)\). Trong hai kết quả đồng khả năng này chỉ có kết quả \((1;3)\) là thuận lợi cho biến cố \(C\).

Vậy xác suất để thẻ lấy ra lần thứ hai ghi số lè, biết rằng thẻ lấy ra lần thứ nhất ghi số 1 là \(P(C\mid A) = \frac{1}{2}\).