Câu hỏi:

01/08/2025 4 Lưu

Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm.

Đán án: ……………………

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi A là biến cố: “ít nhất một con đã ra mặt 5 chấm”

Gọi B là biến cố: “tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10”

Ta có:

\[P\left( A \right) = 1 - P\left( {\bar A} \right) = 1 - {\left( {\frac{5}{6}} \right)^2} = \frac{{11}}{{36}}\]

Biến cố \[B\] có các trường hợp \[\left\{ {\left( {4;6} \right),\left( {6;4} \right),\left( {5;5} \right),\left( {5;6} \right),\left( {6;5} \right),\left( {6;6} \right)} \right\}\]

Biến cố \[A \cap B\] có 3 trường hợp xảy ra: \[\left\{ {\left( {5;5} \right),\left( {5;6} \right),\left( {6;5} \right)} \right\}\] có xác suất là: \[P\left( {A \cap B} \right) = \frac{3}{{36}}\]

Vậy \[P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{\frac{3}{{36}}}}{{\frac{{11}}{{36}}}} = \frac{3}{{11}} \approx 0,27\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A là biến cố: “rút ra được câu hỏi lý thuyết”

Gọi B là biến cố: “rút ra được câu khó”

Nếu biết B đã xảy ra (nghĩa là câu hỏi rút ra là một câu trong số 17 câu khó) thì xác suất để câu hỏi đó là lý thuyết (nghĩa là câu hỏi đó là một câu trong số 5 câu hỏi lý thuyết khó ) chính là xác suất A có điều kiện B đã xảy ra.  Ta đi tính \[P\left( {A|B} \right)\]

Ta có:

\[P\left( A \right) = \frac{{13}}{{40}}\]

\[P\left( B \right) = \frac{{17}}{{40}}\]

\[P\left( {A \cap B} \right) = \frac{5}{{40}}\]

Vậy \[P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{5}{{40}}}}{{\frac{{17}}{{40}}}} = \frac{5}{{17}}\]

Lời giải

Gọi A là biến cố: “Lấy được một viên bi xanh ở lần thứ nhất”

Gọi B là biến cố: “Lấy được một viên bi trắng ở lần thứ hai”.

Ta cần tính xác suất \[P\left( {A \cap B} \right)\]

Theo công thức nhân xác suất \[P\left( {A \cap B} \right) = P\left( A \right).P\left( {B|A} \right)\]

Vì có 30 viên bi xanh trong tổng số 50 viên bi nên\[P\left( A \right) = \frac{{30}}{{50}} = \frac{3}{5}\]

Nếu  A đã xảy ra, tức là một viên bi xanh đã được lấy ra ở lần thứ nhất, thì còn lại trong bình 49 viên bi trong đó số viên bi trắng là 20, do đó\[P\left( {B|A} \right) = \frac{{20}}{{49}}\]

Vậy xác suất cần tìm là \[P\left( {A \cap B} \right) = P\left( A \right).P\left( {B|A} \right) = \frac{3}{5}.\frac{{20}}{{49}} = \frac{{12}}{{29}} \approx 0,41\].