Một hộp có 3 quả bóng màu xanh, 4 quả bóng màu đỏ; các quả bóng có kích thước và khối lượng như nhau. Lấy bóng ngẫu nhiên hai lần liên tiếp, trong đó mỗi lần lấy ngẫu nhiên một quả bóng trong hộp, ghi lại màu của quả bóng lấy ra và bỏ lại quả bóng đó vào hộp. Xét các biến cố:
A: “Quả bóng màu xanh được lấy ra ở lần thứ nhất”;
B : “Quả bóng màu đỏ được lấy ra ở lần thứ hai”.S
Hỏi hai biến cố A và B có độc lập không? .
Đán án: ……………………
Quảng cáo
Trả lời:
\[A,B\] độc lập \[ \Leftrightarrow P\left( {A \cap B} \right) = P\left( A \right).P\left( B \right)\]
\[\begin{array}{l}P\left( A \right) = \frac{3}{7}\\P\left( B \right) = \frac{4}{7}\end{array}\]
\[P\left( {A \cap B} \right) = \frac{{3.4}}{{7.7}} = \frac{{12}}{{49}}\]
\[ \Rightarrow P\left( {A \cap B} \right) = P\left( A \right).P\left( B \right)\]\[A,B\] độc lập
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A là biến cố: “rút ra được câu hỏi lý thuyết”
Gọi B là biến cố: “rút ra được câu khó”
Nếu biết B đã xảy ra (nghĩa là câu hỏi rút ra là một câu trong số 17 câu khó) thì xác suất để câu hỏi đó là lý thuyết (nghĩa là câu hỏi đó là một câu trong số 5 câu hỏi lý thuyết khó ) chính là xác suất A có điều kiện B đã xảy ra. Ta đi tính \[P\left( {A|B} \right)\]
Ta có:
\[P\left( A \right) = \frac{{13}}{{40}}\]
\[P\left( B \right) = \frac{{17}}{{40}}\]
\[P\left( {A \cap B} \right) = \frac{5}{{40}}\]
Vậy \[P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{5}{{40}}}}{{\frac{{17}}{{40}}}} = \frac{5}{{17}}\]
Lời giải
Gọi A là biến cố: “Lấy được một viên bi xanh ở lần thứ nhất”
Gọi B là biến cố: “Lấy được một viên bi trắng ở lần thứ hai”.
Ta cần tính xác suất \[P\left( {A \cap B} \right)\]
Theo công thức nhân xác suất \[P\left( {A \cap B} \right) = P\left( A \right).P\left( {B|A} \right)\]
Vì có 30 viên bi xanh trong tổng số 50 viên bi nên\[P\left( A \right) = \frac{{30}}{{50}} = \frac{3}{5}\]
Nếu A đã xảy ra, tức là một viên bi xanh đã được lấy ra ở lần thứ nhất, thì còn lại trong bình 49 viên bi trong đó số viên bi trắng là 20, do đó\[P\left( {B|A} \right) = \frac{{20}}{{49}}\]
Vậy xác suất cần tìm là \[P\left( {A \cap B} \right) = P\left( A \right).P\left( {B|A} \right) = \frac{3}{5}.\frac{{20}}{{49}} = \frac{{12}}{{29}} \approx 0,41\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.