Câu hỏi:

01/08/2025 84 Lưu

Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm.

Đán án: ……………………

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi A là biến cố: “ít nhất một con đã ra mặt 5 chấm”

Gọi B là biến cố: “tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10”

Ta có:

\[P\left( A \right) = 1 - P\left( {\bar A} \right) = 1 - {\left( {\frac{5}{6}} \right)^2} = \frac{{11}}{{36}}\]

Biến cố \[B\] có các trường hợp \[\left\{ {\left( {4;6} \right),\left( {6;4} \right),\left( {5;5} \right),\left( {5;6} \right),\left( {6;5} \right),\left( {6;6} \right)} \right\}\]

Biến cố \[A \cap B\] có 3 trường hợp xảy ra: \[\left\{ {\left( {5;5} \right),\left( {5;6} \right),\left( {6;5} \right)} \right\}\] có xác suất là: \[P\left( {A \cap B} \right) = \frac{3}{{36}}\]

Vậy \[P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{\frac{3}{{36}}}}{{\frac{{11}}{{36}}}} = \frac{3}{{11}}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét các biến cố: \(A\) : "Chọn được học sinh thích môn Tin học";

B: "Chọn được học sinh thích môn Tiếng Anh".

Khi đó, \({\rm{P}}\left( A \right) = \frac{{15}}{{37}};{\rm{P}}\left( B \right) = \frac{{20}}{{37}};{\rm{P}}\left( {A \cup B} \right) = 1 - \frac{{10}}{{37}} = \frac{{27}}{{37}}\).

Suy ra \({\rm{P}}\left( {A \cap B} \right) = {\rm{P}}\left( A \right) + {\rm{P}}\left( B \right) - {\rm{P}}\left( {A \cup B} \right) = \frac{{15}}{{37}} + \frac{{20}}{{37}} - \frac{{27}}{{37}} = \frac{8}{{37}}\).

Vậy xác suất chọn được học sinh thích môn Tin học, biết học sinh đó thích môn

Tiếng Anh, là \({\rm{P}}\left( {A\mid B} \right) = \frac{{\frac{8}{{\frac{{37}}{{20}}}}}}{{\frac{{37}}{{37}}}} = 0,4\).

Lời giải

Gọi A là biến cố: “rút ra được câu hỏi lý thuyết”

Gọi B là biến cố: “rút ra được câu khó”

Nếu biết B đã xảy ra (nghĩa là câu hỏi rút ra là một câu trong số 17 câu khó) thì xác suất để câu hỏi đó là lý thuyết (nghĩa là câu hỏi đó là một câu trong số 5 câu hỏi lý thuyết khó ) chính là xác suất A có điều kiện B đã xảy ra.  Ta đi tính \[P\left( {A|B} \right)\]

Ta có:

\[P\left( A \right) = \frac{{13}}{{40}}\]

\[P\left( B \right) = \frac{{17}}{{40}}\]

\[P\left( {A \cap B} \right) = \frac{5}{{40}}\]

Vậy \[P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{5}{{40}}}}{{\frac{{17}}{{40}}}} = \frac{5}{{17}}\]