Câu hỏi:

01/08/2025 67 Lưu

Trong hộp đựng 500 chiếc thẻ cùng loại có 200 chiếc thẻ màu vàng. Trên mỗi chiếc thẻ màu vàng có ghi một trong năm số: 1,2,3,4,5. Có 40 chiếc thẻ màu vàng ghi số 5 . Chọn ra ngẫu nhiên một chiếc thẻ trong hộp đựng thẻ. Giả sử chiếc thẻ được chọn ra có màu vàng. Tính xác suất để chiếc thẻ đó ghi số 5 .

Đán án: ……………………

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét hai biến cố sau:

A: "Chiếc thẻ được chọn ra ghi số 5 ";

B: "Chiếc thẻ được chọn ra có màu vàng".

Khi đó, xác suất để chiếc thẻ được chọn ra ghi số 5 , biết rằng chiếc thẻ đó có màu vàng, chính là xác suất có điều kiện \({\rm{P}}({\rm{A}}\mid {\rm{B}})\).

Ta có \({\rm{P}}({\rm{A}}\mid {\rm{B}}) = \frac{{n(A \cap B)}}{{n(B)}} = \frac{{40}}{{200}} = \frac{1}{5} = 0,2\).

Vậy xác suất để chiếc thẻ được chọn ra ghi số 5 , biết rằng chiếc thẻ đó có màu vàng, là 0,2 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét các biến cố: \(A\) : "Chọn được học sinh thích môn Tin học";

B: "Chọn được học sinh thích môn Tiếng Anh".

Khi đó, \({\rm{P}}\left( A \right) = \frac{{15}}{{37}};{\rm{P}}\left( B \right) = \frac{{20}}{{37}};{\rm{P}}\left( {A \cup B} \right) = 1 - \frac{{10}}{{37}} = \frac{{27}}{{37}}\).

Suy ra \({\rm{P}}\left( {A \cap B} \right) = {\rm{P}}\left( A \right) + {\rm{P}}\left( B \right) - {\rm{P}}\left( {A \cup B} \right) = \frac{{15}}{{37}} + \frac{{20}}{{37}} - \frac{{27}}{{37}} = \frac{8}{{37}}\).

Vậy xác suất chọn được học sinh thích môn Tin học, biết học sinh đó thích môn

Tiếng Anh, là \({\rm{P}}\left( {A\mid B} \right) = \frac{{\frac{8}{{\frac{{37}}{{20}}}}}}{{\frac{{37}}{{37}}}} = 0,4\).

Lời giải

Gọi A là biến cố: “rút ra được câu hỏi lý thuyết”

Gọi B là biến cố: “rút ra được câu khó”

Nếu biết B đã xảy ra (nghĩa là câu hỏi rút ra là một câu trong số 17 câu khó) thì xác suất để câu hỏi đó là lý thuyết (nghĩa là câu hỏi đó là một câu trong số 5 câu hỏi lý thuyết khó ) chính là xác suất A có điều kiện B đã xảy ra.  Ta đi tính \[P\left( {A|B} \right)\]

Ta có:

\[P\left( A \right) = \frac{{13}}{{40}}\]

\[P\left( B \right) = \frac{{17}}{{40}}\]

\[P\left( {A \cap B} \right) = \frac{5}{{40}}\]

Vậy \[P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{5}{{40}}}}{{\frac{{17}}{{40}}}} = \frac{5}{{17}}\]