Câu hỏi:

03/08/2025 3 Lưu

Cho hình bình hành \(ABCD\). Trên các đoạn thẳng \(DC,\,\,AB\) theo thứ tự lấy các điểm \(M,\,\,N\) sao cho \(DM = BN\). Gọi \(P\) là giao điểm của \(AM,\,\,DB\)\(Q\) là giao điểm của \(CN,\,\,DB\). Khẳng định nào đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Khẳng định nào đúng? (ảnh 1)

Ta có \(DM = BN \Rightarrow AN = MC\), mặt khác \(AN\) song song với \(MC\) do đó tứ giác \(ANCM\) là hình bình hành. Suy ra \(AM\,{\rm{//}}\,NC\).

Xét tam giác \(\Delta DMP\) và \(\Delta BNQ\) ta có \(DM = NB\) (giả thiết), \(\widehat {PDM} = \widehat {QBN}\) (so le trong).

Mà \(\widehat {DMP} = \widehat {MCN}\) (hai góc đồng vị) và \(\widehat {MCN} = \widehat {BNQ}\) (so le trong) suy ra \(\widehat {DMP} = \widehat {BNQ}\).

Do đó \(\Delta DMP = \Delta BNQ\) (g.c.g) suy ra \(DP = QB\).

Dễ thấy \(\overrightarrow {DP} ,\,\,\overrightarrow {QB} \) cùng hướng vì vậy \(\overrightarrow {DP}  = \overrightarrow {QB} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c (ảnh 1)

a) Sai. Do \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN = \frac{1}{2}BC\) và \(MN\,{\rm{//}}\,BC\).

b) Đúng. Điểm \(P\) đối xứng với điểm \(M\) qua \(N\) nên \(MP = 2MN = BC\).

Do đó \(\left| {\overrightarrow {MP} } \right| = \left| {\overrightarrow {BC} } \right|\). (1)

c) Sai. Xét nửa mặt phẳng bờ \(AB\) chứa \(C\), ta có \(N\) là trung điểm \(AC\) nên \(N\) và \(C\) cùng phía \(AB\) hay cùng phía \(MB\), mà \(MN\,{\rm{//}}\,BC\), do đó hai vectơ \(\overrightarrow {MN} \) và \(\overrightarrow {BC} \) cùng hướng.

d) Đúng. Ta có \(P\) đối xứng \(M\) qua \(N\) nên hai vectơ \(\overrightarrow {MP} \) và \(\overrightarrow {MN} \) cùng hướng, dễ thấy \(\overrightarrow {MN}  \ne \overrightarrow 0 \) nên hai vectơ \(\overrightarrow {MP} \) và \(\overrightarrow {BC} \) cùng hướng. (2)

Từ \((1)\) và \((2)\), suy ra \(\overrightarrow {MP}  = \overrightarrow {BC} \).

Lời giải

c (ảnh 1)

Gọi \(M\) là trung điểm của \(BC\), ta có:

\(AG = \frac{2}{3}AM = \frac{2}{3}\sqrt {A{B^2} - B{M^2}}  = \frac{2}{3}\sqrt {{a^2} - \frac{{{a^2}}}{4}}  = \frac{{a\sqrt 3 }}{3}\).

Suy ra \(MI = AG = \frac{{a\sqrt 3 }}{3}\).

Khi đó, \(\left| {\overrightarrow {BI} } \right| = BI = \sqrt {B{M^2} + M{I^2}}  = \sqrt {\frac{{{a^2}}}{4} + \frac{{{a^2}}}{3}}  = \frac{{a\sqrt {21} }}{6}\).

Vậy \(m = 21\).

Đáp án: 21.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP