Câu hỏi:

03/08/2025 20 Lưu

Cho hình bình hành \(ABCD\). Trên các đoạn thẳng \(DC,\,\,AB\) theo thứ tự lấy các điểm \(M,\,\,N\) sao cho \(DM = BN\). Gọi \(P\) là giao điểm của \(AM,\,\,DB\)\(Q\) là giao điểm của \(CN,\,\,DB\). Khẳng định nào đúng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Khẳng định nào đúng? (ảnh 1)

Ta có \(DM = BN \Rightarrow AN = MC\), mặt khác \(AN\) song song với \(MC\) do đó tứ giác \(ANCM\) là hình bình hành. Suy ra \(AM\,{\rm{//}}\,NC\).

Xét tam giác \(\Delta DMP\) và \(\Delta BNQ\) ta có \(DM = NB\) (giả thiết), \(\widehat {PDM} = \widehat {QBN}\) (so le trong).

Mà \(\widehat {DMP} = \widehat {MCN}\) (hai góc đồng vị) và \(\widehat {MCN} = \widehat {BNQ}\) (so le trong) suy ra \(\widehat {DMP} = \widehat {BNQ}\).

Do đó \(\Delta DMP = \Delta BNQ\) (g.c.g) suy ra \(DP = QB\).

Dễ thấy \(\overrightarrow {DP} ,\,\,\overrightarrow {QB} \) cùng hướng vì vậy \(\overrightarrow {DP}  = \overrightarrow {QB} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\vec u\) khác vectơ không và cùng hướng với vectơ \(\overrightarrow {BD} \) nên \(\vec u\) là một trong hai vectơ \(\overrightarrow {BO} ,\overrightarrow {OD} \).

Áp dụng định lí Pythagore cho tam giác \(ABD\): \(B{D^2} = A{B^2} + A{D^2} = 3 + 1 = 4 \Rightarrow BD = 2\).

Vì vậy \(\left| {\vec u} \right| = \left| {\overrightarrow {BO} } \right| = \left| {\overrightarrow {OD} } \right| = \frac{{BD}}{2} = 1\).

Đáp án: 1.

Lời giải

c (ảnh 1)

Gọi \(M\) là trung điểm của \(BC\), ta có:

\(AG = \frac{2}{3}AM = \frac{2}{3}\sqrt {A{B^2} - B{M^2}}  = \frac{2}{3}\sqrt {{a^2} - \frac{{{a^2}}}{4}}  = \frac{{a\sqrt 3 }}{3}\).

Suy ra \(MI = AG = \frac{{a\sqrt 3 }}{3}\).

Khi đó, \(\left| {\overrightarrow {BI} } \right| = BI = \sqrt {B{M^2} + M{I^2}}  = \sqrt {\frac{{{a^2}}}{4} + \frac{{{a^2}}}{3}}  = \frac{{a\sqrt {21} }}{6}\).

Vậy \(m = 21\).

Đáp án: 21.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP