Câu hỏi:

03/08/2025 8 Lưu

Thống kê lợi nhuận hàng tháng (đơn vị: triệu đồng) trong 20 tháng của hai nhà đầu tư được cho như sau:

(Trả lời ngắn) Thống kê lợi nhuận hàng tháng (đơn vị: triệu đồng) trong 20 tháng của hai nhà đầu tư được cho như sau: (ảnh 1)

Tính độ lệch chuẩn của hai mẫu số liệu ghép nhóm trên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn điểm đại diện cho các nhóm số liệu ta tính được các số đặc trưng như sau:

Lợi nhuận trung bình một tháng của các nhà đầu tư tương ứng là:

x¯A=120(215++255)=35 (triệu đồng); x¯B=120(4515++4555)=535 (triệu đồng). 

Độ lệch chuẩn của lợi nhuận hàng tháng của hai nhà đầu tư tương ứng là:

sA=1202152++2552(35)210,95;

sB=12045152++45552(535)213,78.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khoảng biến thiên của mẫu số liệu là: \({\rm{R}} = 180 - 170 = 10\).

Cỡ mẫu là: \({\rm{n}} = 3 + 10 + 6 + 1 = 20\).

Gọi \({{\rm{x}}_1};{{\rm{x}}_2},.;{{\rm{x}}_{20}}\) là mức xà của 20 vận động viên được sắp xếp theo thứ tự tăng dần.

Tứ phân vị thứ nhất của mẫu số liệu là \(\frac{{{x_5} + {x_6}}}{2}\) mà \({x_5};{x_6}\) thuộc nhóm \([172;174)\).

Ta có \({Q_1} = 172 + \frac{{\frac{{20}}{4} - 3}}{{10}} \cdot (174 - 172) = 172,4\).

Tứ phân vị thứ ba của mẫu số liệu là \(\frac{{{x_{15}} + {x_{16}}}}{2}\) mà x15; \({{\rm{x}}_{16}}\) thuộc nhóm \([174;176)\).

Ta có \({Q_3} = 174 + \frac{{\frac{{3.20}}{4} - 13}}{6} \cdot (176 - 174) \approx 174,7\).

Do đó khoảng tứ phân vị là \({\Delta _{\rm{Q}}} = {{\rm{Q}}_3} - {{\rm{Q}}_1} = 174,7 - 172,4 = 2,3\).

Chọn giá trị đại diện cho mẫu số liệu ta có

(Trả lời ngắn) Thành tích môn nhảy cao của các vận động viên tại một giải điền kinh dành cho học sinh trung học phổ thông như sau: (ảnh 2)

Mức xà trung bình là: \(\bar x = \frac{{3.171 + 10.173 + 6.175 + 1.178}}{{20}} = 173,55.{\rm{ }}\)

Phương sai và độ lệch chuẩn: \({s^2} = \frac{{{{3.171}^2} + {{10.173}^2} + {{6.175}^2} + {{1.178}^2}}}{{20}} - {173,55^2} \approx 2,75.{\rm{ }}\)

Suy ra \(s = \sqrt {2,75}  \approx 1,66\).

Lời giải

Chọn giá trị đại diện cho mẫu số liệu ta có:

(Trả lời ngắn) Tuổi thọ của một số linh kiện điện tử (đơn vị: năm) được sản xuất bởi hai phân xưởng được cho như sau: (ảnh 2)

Tuối thọ trung bình của các linh kiện của phân xưởng 1 là:

\(\overline {{x_1}}  = \frac{{4 \cdot 1,75 + 9.2,25 + 13 \cdot 2,75 + 8 \cdot 3,25 + 6 \cdot 3,75}}{{4 + 9 + 13 + 8 + 6}} = 2,7875.{\rm{ }}\)

Tuối thọ trung bình của các linh kiện của phân xưởng 2 là:

\(\overline {{x_2}}  = \frac{{2 \cdot 1,75 + 8 \cdot 2,25 + 20 \cdot 2,75 + 7 \cdot 3,25 + 3 \cdot 3,75}}{{2 + 8 + 20 + 7 + 3}} = 2,7625.{\rm{ }}\)

Phương sai và độ lệch chuấn của các linh kiện của phân xưởng 1 là:

Suy ra \(s_1^2 = \frac{{{{4.1,75}^2} + {{9.2,25}^2} + {{13.2,75}^2} + {{8.3,25}^2} + {{6.3,75}^2}}}{{40}} - {(2,7875)^2} \approx 0,355\).

Phương sai và độ lệch chuấn của các linh kiện của phân xưởng 2 là:

\(s_2^2 = \frac{{2 \cdot {{1,75}^2} + {{8.2,25}^2} + {{20.2,75}^2} + {{7.3,25}^2} + {{3.3,75}^2}}}{{40}} - {(2,7625)^2} \approx 0,219.{\rm{ }}\)

Suy ra \({s_2} = \sqrt {0,219}  \approx 0,47\).

Đối với mẫu số liệu này thì phương sai và độ lệch chuấn nhó nên độ phân tán của số liệu thấp. Do đó các giá trị của mẫu số liệu tập trung quanh giá trị trung bình.