Câu hỏi:

03/08/2025 8 Lưu

Để đánh giá chất lượng một loại pin điện thoại mới, người ta ghi lại thời gian nghe nhạc liên tục của điện thoại được sạc đầy pin cho đến khi hết pin cho kết quả như sau:

(Trả lời ngắn) Để đánh giá chất lượng một loại pin điện thoại mới, người ta ghi lại thời gian nghe nhạc liên tục của điện thoại được sạc đầy pin (ảnh 1)

Tính khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn của mẫu số liệu ghép nhóm trên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Khoảng biến thiên: \({\rm{R}} = 7,5 - 5 = 2,5\).

Cỡ mẫu là \({\rm{n}} = 2 + 8 + 15 + 10 + 5 = 40\).

Gọi \({{\rm{x}}_1};{{\rm{x}}_2}; \ldots ;{{\rm{x}}_{40}}\) thời gian nghe nhạc liên tục của điện thoại được sạc đầy pin cho đến khi hết pin và được sắp xếp theo thứ tự tăng dằn.

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{{{x_{10}} + {x_{11}}}}{2}\).

Mà \({x_{10}} \in [5,5;6);{x_{11}} \in [6;6,5)\). Do đó \({Q_1} = 6\).

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{{{x_{30}} + {x_{31}}}}{2}\).

Mà \({x_{30}};{x_{31}} \in [6,5;7)\) nên nhóm chứa tứ phân vị thứ ba là \([6,5;7)\).

Ta có \({Q_3} = 6,5 + \frac{{\frac{{3.40}}{4} - 25}}{{10}} \cdot (7 - 6,5) = 6,75\).

Khoảng tứ phân vị \({{\rm{D}}_{\rm{Q}}} = {{\rm{Q}}_3} - {{\rm{Q}}_1} = 6,75 - 6 = 0,75\).

Chọn giá trị đại diện cho mẫu số liệu ta có

(Trả lời ngắn) Để đánh giá chất lượng một loại pin điện thoại mới, người ta ghi lại thời gian nghe nhạc liên tục của điện thoại được sạc đầy pin (ảnh 2)

Thời gian trung bình là: \(\bar x = \frac{{5,25 \cdot 2 + 5,75 \cdot 8 + 15 \cdot 6,25 + 10 \cdot 6,75 + 5 \cdot 7,25}}{{40}} = 6,35.{\rm{ }}\)

Phương sai và độ lệch chuẩn là:

\({s^2} = \frac{{{{5,25}^2} \cdot 2 + {{5,75}^2} \cdot 8 + 15 \cdot {{6,25}^2} + 10 \cdot {{6,75}^2} + 5 \cdot {{7,25}^2}}}{{40}} - {6,35^2} = 0,2775.{\rm{ }}\)Suy ra \(s = \sqrt {0,2775}  \approx 0,53\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn giá trị đại diện cho mẫu số liệu ta có:

(Trả lời ngắn) Tuổi thọ của một số linh kiện điện tử (đơn vị: năm) được sản xuất bởi hai phân xưởng được cho như sau: (ảnh 2)

Tuối thọ trung bình của các linh kiện của phân xưởng 1 là:

\(\overline {{x_1}}  = \frac{{4 \cdot 1,75 + 9.2,25 + 13 \cdot 2,75 + 8 \cdot 3,25 + 6 \cdot 3,75}}{{4 + 9 + 13 + 8 + 6}} = 2,7875.{\rm{ }}\)

Tuối thọ trung bình của các linh kiện của phân xưởng 2 là:

\(\overline {{x_2}}  = \frac{{2 \cdot 1,75 + 8 \cdot 2,25 + 20 \cdot 2,75 + 7 \cdot 3,25 + 3 \cdot 3,75}}{{2 + 8 + 20 + 7 + 3}} = 2,7625.{\rm{ }}\)

Phương sai và độ lệch chuấn của các linh kiện của phân xưởng 1 là:

Suy ra \(s_1^2 = \frac{{{{4.1,75}^2} + {{9.2,25}^2} + {{13.2,75}^2} + {{8.3,25}^2} + {{6.3,75}^2}}}{{40}} - {(2,7875)^2} \approx 0,355\).

Phương sai và độ lệch chuấn của các linh kiện của phân xưởng 2 là:

\(s_2^2 = \frac{{2 \cdot {{1,75}^2} + {{8.2,25}^2} + {{20.2,75}^2} + {{7.3,25}^2} + {{3.3,75}^2}}}{{40}} - {(2,7625)^2} \approx 0,219.{\rm{ }}\)

Suy ra \({s_2} = \sqrt {0,219}  \approx 0,47\).

Đối với mẫu số liệu này thì phương sai và độ lệch chuấn nhó nên độ phân tán của số liệu thấp. Do đó các giá trị của mẫu số liệu tập trung quanh giá trị trung bình.

Lời giải

Khoảng biến thiên của mẫu số liệu là: \({\rm{R}} = 180 - 170 = 10\).

Cỡ mẫu là: \({\rm{n}} = 3 + 10 + 6 + 1 = 20\).

Gọi \({{\rm{x}}_1};{{\rm{x}}_2},.;{{\rm{x}}_{20}}\) là mức xà của 20 vận động viên được sắp xếp theo thứ tự tăng dần.

Tứ phân vị thứ nhất của mẫu số liệu là \(\frac{{{x_5} + {x_6}}}{2}\) mà \({x_5};{x_6}\) thuộc nhóm \([172;174)\).

Ta có \({Q_1} = 172 + \frac{{\frac{{20}}{4} - 3}}{{10}} \cdot (174 - 172) = 172,4\).

Tứ phân vị thứ ba của mẫu số liệu là \(\frac{{{x_{15}} + {x_{16}}}}{2}\) mà x15; \({{\rm{x}}_{16}}\) thuộc nhóm \([174;176)\).

Ta có \({Q_3} = 174 + \frac{{\frac{{3.20}}{4} - 13}}{6} \cdot (176 - 174) \approx 174,7\).

Do đó khoảng tứ phân vị là \({\Delta _{\rm{Q}}} = {{\rm{Q}}_3} - {{\rm{Q}}_1} = 174,7 - 172,4 = 2,3\).

Chọn giá trị đại diện cho mẫu số liệu ta có

(Trả lời ngắn) Thành tích môn nhảy cao của các vận động viên tại một giải điền kinh dành cho học sinh trung học phổ thông như sau: (ảnh 2)

Mức xà trung bình là: \(\bar x = \frac{{3.171 + 10.173 + 6.175 + 1.178}}{{20}} = 173,55.{\rm{ }}\)

Phương sai và độ lệch chuẩn: \({s^2} = \frac{{{{3.171}^2} + {{10.173}^2} + {{6.175}^2} + {{1.178}^2}}}{{20}} - {173,55^2} \approx 2,75.{\rm{ }}\)

Suy ra \(s = \sqrt {2,75}  \approx 1,66\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP