Để đánh giá chất lượng một loại pin điện thoại mới, người ta ghi lại thời gian nghe nhạc liên tục của điện thoại được sạc đầy pin cho đến khi hết pin cho kết quả như sau:
Tính khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn của mẫu số liệu ghép nhóm trên.
Để đánh giá chất lượng một loại pin điện thoại mới, người ta ghi lại thời gian nghe nhạc liên tục của điện thoại được sạc đầy pin cho đến khi hết pin cho kết quả như sau:

Tính khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn của mẫu số liệu ghép nhóm trên.
Quảng cáo
Trả lời:
Khoảng biến thiên: \({\rm{R}} = 7,5 - 5 = 2,5\).
Cỡ mẫu là \({\rm{n}} = 2 + 8 + 15 + 10 + 5 = 40\).
Gọi \({{\rm{x}}_1};{{\rm{x}}_2}; \ldots ;{{\rm{x}}_{40}}\) thời gian nghe nhạc liên tục của điện thoại được sạc đầy pin cho đến khi hết pin và được sắp xếp theo thứ tự tăng dằn.
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{{{x_{10}} + {x_{11}}}}{2}\).
Mà \({x_{10}} \in [5,5;6);{x_{11}} \in [6;6,5)\). Do đó \({Q_1} = 6\).
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{{{x_{30}} + {x_{31}}}}{2}\).
Mà \({x_{30}};{x_{31}} \in [6,5;7)\) nên nhóm chứa tứ phân vị thứ ba là \([6,5;7)\).
Ta có \({Q_3} = 6,5 + \frac{{\frac{{3.40}}{4} - 25}}{{10}} \cdot (7 - 6,5) = 6,75\).
Khoảng tứ phân vị \({{\rm{D}}_{\rm{Q}}} = {{\rm{Q}}_3} - {{\rm{Q}}_1} = 6,75 - 6 = 0,75\).
Chọn giá trị đại diện cho mẫu số liệu ta có

Thời gian trung bình là: \(\bar x = \frac{{5,25 \cdot 2 + 5,75 \cdot 8 + 15 \cdot 6,25 + 10 \cdot 6,75 + 5 \cdot 7,25}}{{40}} = 6,35.{\rm{ }}\)
Phương sai và độ lệch chuẩn là:
\({s^2} = \frac{{{{5,25}^2} \cdot 2 + {{5,75}^2} \cdot 8 + 15 \cdot {{6,25}^2} + 10 \cdot {{6,75}^2} + 5 \cdot {{7,25}^2}}}{{40}} - {6,35^2} = 0,2775.{\rm{ }}\)Suy ra \(s = \sqrt {0,2775} \approx 0,53\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn giá trị đại diện cho mẫu số liệu ta có:

Tuối thọ trung bình của các linh kiện của phân xưởng 1 là:
\(\overline {{x_1}} = \frac{{4 \cdot 1,75 + 9.2,25 + 13 \cdot 2,75 + 8 \cdot 3,25 + 6 \cdot 3,75}}{{4 + 9 + 13 + 8 + 6}} = 2,7875.{\rm{ }}\)
Tuối thọ trung bình của các linh kiện của phân xưởng 2 là:
\(\overline {{x_2}} = \frac{{2 \cdot 1,75 + 8 \cdot 2,25 + 20 \cdot 2,75 + 7 \cdot 3,25 + 3 \cdot 3,75}}{{2 + 8 + 20 + 7 + 3}} = 2,7625.{\rm{ }}\)
Phương sai và độ lệch chuấn của các linh kiện của phân xưởng 1 là:
Suy ra \(s_1^2 = \frac{{{{4.1,75}^2} + {{9.2,25}^2} + {{13.2,75}^2} + {{8.3,25}^2} + {{6.3,75}^2}}}{{40}} - {(2,7875)^2} \approx 0,355\).
Phương sai và độ lệch chuấn của các linh kiện của phân xưởng 2 là:
\(s_2^2 = \frac{{2 \cdot {{1,75}^2} + {{8.2,25}^2} + {{20.2,75}^2} + {{7.3,25}^2} + {{3.3,75}^2}}}{{40}} - {(2,7625)^2} \approx 0,219.{\rm{ }}\)
Suy ra \({s_2} = \sqrt {0,219} \approx 0,47\).
Đối với mẫu số liệu này thì phương sai và độ lệch chuấn nhó nên độ phân tán của số liệu thấp. Do đó các giá trị của mẫu số liệu tập trung quanh giá trị trung bình.
Lời giải
Khoảng biến thiên của mẫu số liệu là: \({\rm{R}} = 180 - 170 = 10\).
Cỡ mẫu là: \({\rm{n}} = 3 + 10 + 6 + 1 = 20\).
Gọi \({{\rm{x}}_1};{{\rm{x}}_2},.;{{\rm{x}}_{20}}\) là mức xà của 20 vận động viên được sắp xếp theo thứ tự tăng dần.
Tứ phân vị thứ nhất của mẫu số liệu là \(\frac{{{x_5} + {x_6}}}{2}\) mà \({x_5};{x_6}\) thuộc nhóm \([172;174)\).
Ta có \({Q_1} = 172 + \frac{{\frac{{20}}{4} - 3}}{{10}} \cdot (174 - 172) = 172,4\).
Tứ phân vị thứ ba của mẫu số liệu là \(\frac{{{x_{15}} + {x_{16}}}}{2}\) mà x15; \({{\rm{x}}_{16}}\) thuộc nhóm \([174;176)\).
Ta có \({Q_3} = 174 + \frac{{\frac{{3.20}}{4} - 13}}{6} \cdot (176 - 174) \approx 174,7\).
Do đó khoảng tứ phân vị là \({\Delta _{\rm{Q}}} = {{\rm{Q}}_3} - {{\rm{Q}}_1} = 174,7 - 172,4 = 2,3\).
Chọn giá trị đại diện cho mẫu số liệu ta có

Mức xà trung bình là: \(\bar x = \frac{{3.171 + 10.173 + 6.175 + 1.178}}{{20}} = 173,55.{\rm{ }}\)
Phương sai và độ lệch chuẩn: \({s^2} = \frac{{{{3.171}^2} + {{10.173}^2} + {{6.175}^2} + {{1.178}^2}}}{{20}} - {173,55^2} \approx 2,75.{\rm{ }}\)
Suy ra \(s = \sqrt {2,75} \approx 1,66\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.