Câu hỏi:

19/08/2025 24 Lưu

Trong bài thực hành đo hiệu điện thế của mạch điện, An và Bình đã dùng hai vôn kế khác nhau để đo, mỗi bạn tiến hành đo 10 lần cho kết quả như sau:

(Trả lời ngắn) Trong bài thực hành đo hiệu điện thế của mạch điện, An và Bình đã dùng hai vôn kế khác nhau để đo, mỗi bạn tiến hành đo 10 lần cho kết quả như sau: (ảnh 1)

Tính độ lệch chuẩn của các mẫu số liệu ghép nhóm cho kết quả đo của An và Bình.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn giá trị đại diện cho mẫu số liệu ta có:

(Trả lời ngắn) Trong bài thực hành đo hiệu điện thế của mạch điện, An và Bình đã dùng hai vôn kế khác nhau để đo, mỗi bạn tiến hành đo 10 lần cho kết quả như sau: (ảnh 2)

Hiệu điện thế trung bình của An đo là: \(\overline {{x_1}}  = \frac{{3,875 \cdot 1 + 3,925 \cdot 6 + 3,975 \cdot 2 + 4,025.1}}{{10}} = 3,94.{\rm{ }}\)

Hiệu điện thế trung bình của Bình đo là: \(\overline {{x_2}}  = \frac{{3,875.1 + 3,925.3 + 3,975.4 + 4,025.2}}{{10}} = 3,96\)

Phương sai và độ lệch chuẩn về mẫu số liệu ghép nhóm của An đo là:

\(s_1^2 = \frac{{{{3,875}^2} \cdot 1 + {{3,925}^2} \cdot 6 + {{3,975}^2} \cdot 2 + {{4,025}^2} \cdot 1}}{{10}} - {3,94^2} = 1,525 \cdot {10^{ - 3}}{\rm{. }}\)Suy ra \({s_1} = \sqrt {1,525 \cdot {{10}^{ - 3}}}  \approx 0,039\).

Phương sai và độ lệch chuẩn về mẫu số liệu ghép nhóm của Bình đo là:

\(s_2^2 = \frac{{{{3,875}^2} \cdot 1 + {{3,925}^2} \cdot 3 + {{3,975}^2} \cdot 4 + {{4,025}^2} \cdot 2}}{{10}} - {3,96^2} = 2,025 \cdot {10^{ - 3}}{\rm{. }}\)Suy ra \({s_2} = \sqrt {2,025 \cdot {{10}^{ - 3}}}  = 0,045\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn giá trị đại diện cho các nhóm số liệu, ta có:

(Trả lời ngắn) Người ta theo dõi sự thay đổi cân nặng, được tính bằng hiệu cân nặng trước và sau ba tháng áp dụng chế độ ăn kiêng (ảnh 2)

Tổng số người nam là: \({n_1} = 2 + 3 + 5 + 3 + 2 = 15\).

Tổng số người nữ là: \({n_2} = 2 + 7 + 12 + 7 + 2 = 30\).

Thay đổi cân nặng trung bình của người nam là:

\({\bar x_1} = \frac{1}{{15}}[2 \cdot ( - 0,5) + 3 \cdot 0,5 + 5 \cdot 1,5 + 3 \cdot 2,5 + 2 \cdot 3,5] = 1,5(\;{\rm{kg}})\)

Thay đổi cân nặng trung bình của người nữ là:

\({\bar x_2} = \frac{1}{{30}}[2 \cdot ( - 0,5) + 7 \cdot 0,5 + 12 \cdot 1,5 + 7 \cdot 2,5 + 2 \cdot 3,5] = 1,5(\;{\rm{kg}})\)

Phương sai và độ lệch chuẩn của mẫu số liệu về thay đổi cân nặng của người nam là:

\(s_1^2 = \frac{1}{{15}}\left[ {2 \cdot {{( - 0,5)}^2} + 3 \cdot {{0,5}^2} + 5 \cdot {{1,5}^2} + 3 \cdot {{2,5}^2} + 2 \cdot {{3,5}^2}} \right] - {1,5^2} \approx {1,21^2};{s_1} \approx 1,21\)

Phương sai và độ lệch chuẩn của mẫu số liệu về thay đồi cân nặng của người nừ là:

\(s_2^2 = \frac{1}{{30}}\left[ {2 \cdot {{( - 0,5)}^2} + 7 \cdot {{0,5}^2} + 12 \cdot {{1,5}^2} + 7 \cdot {{2,5}^2} + 2 \cdot {{3,5}^2}} \right] - {1,5^2} \approx {2,06^2};{s_2} \approx 2,06.\)

Như vậy, sau ba tháng áp dụng chế độ ăn kiêng này, về trung bình sự thay đổi cân nặng của nam và nữ là như nhau. Tuy nhiên, sự biến động về thay đổi cân nặng của nữ nhiều hơn so với của nam.

Lời giải

 Số trung bình của mẫu số liệu ghép nhóm là: \[{\bar x_2} = \frac{{3.89 + 6.107 + 3.125 + 5.143 + 3.161}}{{20}} = 124,1\]

Phương sai của mẫu số liệu ghép nhóm là
S22 = \[\frac{1}{{20}}\] (3 . 892 + 6 . 1072 + 3 . 1252 + 5 . 1432 + 3 . 1612) – 124,12 = 566,19.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_2} \approx \sqrt {566,19}  \approx 23,795\]