Cho hàm số \(F(x) = {x^3} - 2x + 1\), \(x \in \mathbb{R}\) là một nguyên hàm của hàm số \(f(x)\).
Nếu hàm số \(G(x)\) cũng là một nguyên hàm của hàm số \(f(x)\)và \(G( - 1) = 3\) thì \[G\left( x \right) = F\left( x \right) - 1\],\(x \in \mathbb{R}\).
Cho hàm số \(F(x) = {x^3} - 2x + 1\), \(x \in \mathbb{R}\) là một nguyên hàm của hàm số \(f(x)\).
Câu hỏi trong đề: (Đúng sai) 6 bài tập Nguyên hàm (có lời giải) !!
Quảng cáo
Trả lời:

Sai
Vì \(G(x)\)là một nguyên hàm của hàm số \(f(x)\)trên \(\mathbb{R}\)nên \(G(x) = F(x) + C\), với \(C\)1à một hằng số. Mà \(G( - 1) = 3\)nên ta có \[G( - 1) = F( - 1) + C \Leftrightarrow 3 = 2 + C \Leftrightarrow C = 1\]. Vậy \[G\left( x \right) = F\left( x \right) + 1\],\(x \in \mathbb{R}\).
Suy ra Sai.
Câu hỏi cùng đoạn
Câu 2:
Nếu hàm số\(H(x)\) cũng là một nguyên hàm của hàm số\(f(x)\) và \(H(1) = - 3\)thì\[H\left( x \right) = F\left( x \right) - 3\],\(x \in \mathbb{R}\).
Lời giải của GV VietJack
Đúng
Vì \(H(x)\)là một nguyên hàm của hàm số \(f(x)\)trên \(\mathbb{R}\)nên \(H(x) = F(x) + C\), với \(C\)1à một hằng số. Mà \(H(1) = - 3\)nên ta có \[H(1) = F(1) + C \Leftrightarrow - 3 = 0 + C \Leftrightarrow C = - 3\]. Vậy \[H\left( x \right) = F\left( x \right) - 3\],\(x \in \mathbb{R}\).
Suy ra đúngCâu 3:
Nếu hàm số\(K(x)\) cũng là một nguyên hàm của hàm số \(f(x)\)và \(K(0) = 0\) thì \[K\left( x \right) = F\left( x \right) + 1\],\(x \in \mathbb{R}\).
Lời giải của GV VietJack
Sai
Vì \(K(x)\)là một nguyên hàm của hàm số \(f(x)\)trên \(\mathbb{R}\)nên \(K(x) = F(x) + C\), với \(C\)1à một hằng số. Mà \(K(0) = 0\)nên ta có \[K(0) = F(0) + C \Leftrightarrow 0 = 1 + C \Leftrightarrow C = - 1\]. Vậy \[K\left( x \right) = F\left( x \right) - 1\],\(x \in \mathbb{R}\).
Suy ra Sai.
Câu 4:
Nếu hàm số\(M(x)\)cũng là một nguyên hàm của hàm số\(f(x)\)và \(M(2) = 4\) thì \[M\left( x \right) = F\left( x \right) - 1\],\(x \in \mathbb{R}\).
Lời giải của GV VietJack
Đúng
Vì \(K(x)\)là một nguyên hàm của hàm số \(f(x)\)trên \(\mathbb{R}\)nên \(K(x) = F(x) + C\), với \(C\)1à một hằng số. Mà \(K(0) = 0\)nên ta có \[K(0) = F(0) + C \Leftrightarrow 0 = 1 + C \Leftrightarrow C = - 1\]. Vậy \[K\left( x \right) = F\left( x \right) - 1\],\(x \in \mathbb{R}\).
Suy ra Sai.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[Q\left( t \right) = \int {Q'\left( t \right).dt} = {t^4} - 24{t^3} + 144t + C \Rightarrow Q\left( 2 \right) = 500 \Rightarrow C = 100.\]
Suy ra \[Q\left( t \right) = {t^4} - 24{t^3} + 144t + 100 \Rightarrow \] a) sai.
Lời giải
Sai
Vì \(s(t)\), \(v(t)\) lần lượt là phương trình quãng đường và phương trình vận tốc của chuyển động đó theo thời gian \(t\) (giây) nên ta có \(s'(t) = v(t)\) và \(\int v (t){\rm{dt}} = s(t) + C\).
\(\int s (t){\rm{dt}} = v(t) + C\) . Suy ra Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.