Cho hàm số \(F(x) = {x^3} - 2x + 1\), \(x \in \mathbb{R}\) là một nguyên hàm của hàm số \(f(x)\).
Nếu hàm số \(G(x)\) cũng là một nguyên hàm của hàm số \(f(x)\)và \(G( - 1) = 3\) thì \[G\left( x \right) = F\left( x \right) - 1\],\(x \in \mathbb{R}\).
Cho hàm số \(F(x) = {x^3} - 2x + 1\), \(x \in \mathbb{R}\) là một nguyên hàm của hàm số \(f(x)\).
Câu hỏi trong đề: (Đúng sai) 6 bài tập Nguyên hàm (có lời giải) !!
Quảng cáo
Trả lời:
Sai
Vì \(G(x)\)là một nguyên hàm của hàm số \(f(x)\)trên \(\mathbb{R}\)nên \(G(x) = F(x) + C\), với \(C\)1à một hằng số. Mà \(G( - 1) = 3\)nên ta có \[G( - 1) = F( - 1) + C \Leftrightarrow 3 = 2 + C \Leftrightarrow C = 1\]. Vậy \[G\left( x \right) = F\left( x \right) + 1\],\(x \in \mathbb{R}\).
Suy ra Sai.
Câu hỏi cùng đoạn
Câu 2:
Nếu hàm số\(H(x)\) cũng là một nguyên hàm của hàm số\(f(x)\) và \(H(1) = - 3\)thì\[H\left( x \right) = F\left( x \right) - 3\],\(x \in \mathbb{R}\).
Đúng
Vì \(H(x)\)là một nguyên hàm của hàm số \(f(x)\)trên \(\mathbb{R}\)nên \(H(x) = F(x) + C\), với \(C\)1à một hằng số. Mà \(H(1) = - 3\)nên ta có \[H(1) = F(1) + C \Leftrightarrow - 3 = 0 + C \Leftrightarrow C = - 3\]. Vậy \[H\left( x \right) = F\left( x \right) - 3\],\(x \in \mathbb{R}\).
Suy ra đúngCâu 3:
Nếu hàm số\(K(x)\) cũng là một nguyên hàm của hàm số \(f(x)\)và \(K(0) = 0\) thì \[K\left( x \right) = F\left( x \right) + 1\],\(x \in \mathbb{R}\).
Sai
Vì \(K(x)\)là một nguyên hàm của hàm số \(f(x)\)trên \(\mathbb{R}\)nên \(K(x) = F(x) + C\), với \(C\)1à một hằng số. Mà \(K(0) = 0\)nên ta có \[K(0) = F(0) + C \Leftrightarrow 0 = 1 + C \Leftrightarrow C = - 1\]. Vậy \[K\left( x \right) = F\left( x \right) - 1\],\(x \in \mathbb{R}\).
Suy ra Sai.
Câu 4:
Nếu hàm số\(M(x)\)cũng là một nguyên hàm của hàm số\(f(x)\)và \(M(2) = 4\) thì \[M\left( x \right) = F\left( x \right) - 1\],\(x \in \mathbb{R}\).
Đúng
Vì \(K(x)\)là một nguyên hàm của hàm số \(f(x)\)trên \(\mathbb{R}\)nên \(K(x) = F(x) + C\), với \(C\)1à một hằng số. Mà \(K(0) = 0\)nên ta có \[K(0) = F(0) + C \Leftrightarrow 0 = 1 + C \Leftrightarrow C = - 1\]. Vậy \[K\left( x \right) = F\left( x \right) - 1\],\(x \in \mathbb{R}\).
Suy ra Sai.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[Q\left( t \right) = \int {Q'\left( t \right).dt} = {t^4} - 24{t^3} + 144t + C \Rightarrow Q\left( 2 \right) = 500 \Rightarrow C = 100.\]
Suy ra \[Q\left( t \right) = {t^4} - 24{t^3} + 144t + 100 \Rightarrow \] a) sai.
Lời giải
Sai
Vì \(s(t)\), \(v(t)\) lần lượt là phương trình quãng đường và phương trình vận tốc của chuyển động đó theo thời gian \(t\) (giây) nên ta có \(s'(t) = v(t)\) và \(\int v (t){\rm{dt}} = s(t) + C\).
\(\int s (t){\rm{dt}} = v(t) + C\) . Suy ra Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.