CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a. Khoảng cách từ A đến mặt phẳng (A'BC) bằng  	 (ảnh 1)

Gọi E là trung điểm của BC.

DABC đều nên AE ^ BC mà AA' ^ BC (do AA' ^ (ABC)) nên BC ^ (A'AE).

Kẻ AH ^ A'E và AH ^ BC (do BC ^ (A'AE)) nên AH ^ (A'BC).

Suy ra d(A, (A'BC)) = AH.

DABC đều nên \(AE = \frac{{a\sqrt 3 }}{2}\).

Xét DA'AE vuông tại A, ta có \[\frac{1}{{A{H^2}}} = \frac{1}{{A{{A'}^2}}} + \frac{1}{{A{E^2}}} = \frac{1}{{{a^2}}} + \frac{4}{{3{a^2}}} = \frac{7}{{3{a^2}}}\]\( \Rightarrow AH = \frac{{a\sqrt {21} }}{7}\).

Lời giải

Tính x^2 + 100. (ảnh 1)

Do BC ^ AB và BC ^ SA nên suy ra BC ^ (SAB).

Gọi H là hình chiếu của A lên SB.

Vì AH ^ SB và AH ^ BC (vì BC ^ (SAB)) nên suy ra AH ^ (SBC).

Suy ra SH là hình chiếu của SA trên mặt phẳng (SBC).

Do đó (SA, (SBC)) = (SA, SH) = \(\widehat {HSA} = \widehat {BSA}\).

Xét tam giác SAB vuông tại A, ta có \(\sin \widehat {BSA} = \frac{{AB}}{{SB}} = \frac{a}{{2a}} = \frac{1}{2}\) \( \Rightarrow \widehat {BSA} = 30^\circ \Rightarrow x = 30\).

Vậy x2 + 100 = 1000.

Trả lời: 1000.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP