Câu hỏi:

19/08/2025 32 Lưu

Cho hình chóp S.ABCD có SA vuông góc với đáy ABCD. Biết đáy ABCD là hình chữ nhật. Biết AB = a, BC = 3a, SB = 2a. Góc giữa SA và mặt phẳng (SBC) là x°. Tính x2 + 100.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tính x^2 + 100. (ảnh 1)

Do BC ^ AB và BC ^ SA nên suy ra BC ^ (SAB).

Gọi H là hình chiếu của A lên SB.

Vì AH ^ SB và AH ^ BC (vì BC ^ (SAB)) nên suy ra AH ^ (SBC).

Suy ra SH là hình chiếu của SA trên mặt phẳng (SBC).

Do đó (SA, (SBC)) = (SA, SH) = \(\widehat {HSA} = \widehat {BSA}\).

Xét tam giác SAB vuông tại A, ta có \(\sin \widehat {BSA} = \frac{{AB}}{{SB}} = \frac{a}{{2a}} = \frac{1}{2}\) \( \Rightarrow \widehat {BSA} = 30^\circ \Rightarrow x = 30\).

Vậy x2 + 100 = 1000.

Trả lời: 1000.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

Cho hình lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a. Góc giữa đường thẳng AB' và mặt phẳng (A'B'C') bằng  	 (ảnh 1)

Vì ABCD.A'B'C'D' là hình lăng trụ đều có tất cả các cạnh bằng a nên ABB'A' là hình vuông.

Do AA' ^ (A'B'C') nên A'B' là hình chiếu vuông góc của AB' lên mặt phẳng (A'B'C').

Do đó (AB', (A'B'C')) = (AB', A'B') = \(\widehat {AB'A'} = 45^\circ \).

Câu 2

Lời giải

C

Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ tâm O của đáy đến mặt phẳng (SCD) bằng  	 (ảnh 1)

Do S.ABCD là chóp đều nên SO ^ (ABCD) Þ SO ^ CD.

Gọi H là trung điểm của CD. Suy ra OH ^ CD mà SO ^ CD nên CD ^ (SOH).

Hạ OK ^ SH và OK ^ CD (do CD ^ (SOH)) nên OK ^ (SCD).

Suy ra d(O, (SCD)) = OK.

Ta có \(OH = \frac{a}{2};OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\).

Xét DSOC vuông tại O, ta có \(SO = \sqrt {S{C^2} - O{C^2}} = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} = \frac{{a\sqrt 2 }}{2}\).

Xét DSOH vuông tại O, OK là đường cao, ta có:

\(\frac{1}{{O{K^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{H^2}}} = \frac{4}{{2{a^2}}} + \frac{4}{{{a^2}}} = \frac{6}{{{a^2}}}\) \( \Rightarrow OK = \frac{a}{{\sqrt 6 }}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP