Cho \(\int {f(x){\rm{dx}} = \cos x + C} \). Khẳng định tính đúng sai cho từng mệnh đề sau:
a) \(f(x) = \sin x\)
Cho \(\int {f(x){\rm{dx}} = \cos x + C} \). Khẳng định tính đúng sai cho từng mệnh đề sau:
a) \(f(x) = \sin x\)
Quảng cáo
Trả lời:
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng
Vi \({M^\prime }(t) = m(t)\) nên ta có \(M(t)\) là một nguyên hàm của hàm số \(m(t) = 800 - 2t\).
Do \(\int {(800 - 2t)} {\rm{d}}t = 800\int {\rm{d}} t - \int 2 t\;{\rm{d}}t = 800t - {t^2} + C\)
nên \(M(t) = 800t - {t^2} + C\) với \(0 \le t \le 400\). Vì \(M(0) = 0\) nên \(C = 0\).
Vây \(M(t) = 800t - {t^2}\).
Số ngày công được tính đến hết ngày thứ 400 là:
\(M(400) = 800.400 - {400^2} = 160000.\)
Chi phí nhân công lao động của công trình đó (cho đến lúc hoàn thành) là:
\(400000 \cdot 160000 = 64000000000.{\rm{ }}\)(đồng)
Lời giải
c) Đúng vì \(F(x) = \cos x + C\) mà \(F(0) = 2 \Rightarrow C = 1\). Vậy \(F\left( {\frac{\pi }{2}} \right) = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.